NOTES ON THE GENUS CLERODENDRUM (VERBENACEAE). IV

Harola N. Moluenke

This is a continuation of the notes begun on this genus in Phytologia 57: 157 (1985) and continued in each following issue of this journal.

The generic name, Clerodendrum, is taken from the Greek kleros, chance, and dendron, tree, or chance-tree, in allusion to the ancient belief that some species (e.g., C. fortunatum L.) brought good luck and had healing virtues, while others (e.g., C. infortunatum L.) brought bad luck. Wittstein (1852) expresses it thus: "in Bezug auf die heilsamen und nachiteiligen Wirkungen der verschiedenen Species dieser Gattung: C. fortunatum ist namlich ein gutes Arzneimittel, C. calamitosum U. C. infortunatum wirken gefahrlich."

In the Linnean sexual system the genus is classified in the Didynamia Angiospermia or, later, in the Personatae. Reichenbach placed it in his Labiatae, Necker in the Plasyrgophyta, Ruhling in the Ringentes Halleriae, Endlicher in the Lantaneae, Jussieu in the Vitices, and Adanson in the Verbenaceae. By Salisbury (1796) it was classified in his Scrophulareae.

It may be of interest to note here that there is a genus Clerodendranthus Kudo in the Lamiaceae, regarded by some authors as congeneric with Orthosiphon Benth., a genus of some 30 species in tropical Africa and 20 species in eastern Asia and Indonesia.

The genus Douglassia of Houston and of Adanson and Miller and Duglassia of Amman and of Houston, according to Wittstein (1852), were named in honor of David Douglas (1798--1834) and Francis Douglas (1815--1886). Volkameria was named for Johann Christoph Volckamer (1644--1720), a German botanist. Ovieda was named in conunenoration of Gollzalo Fernandez de Ovieda y Valdés (1478--1557). The Cornacchinia of Endlicher and of Savi was named for Marc Cornacchini, professor of medicine at Pisa in the first half of the lth century.

It should perhaps also be mentioned here that the Volkameria of Patrick Browne (1756) is a synonym of Clethra Gron. in the Clethraceae while the Volkameria of J. Burman (1874) and of N. L. Burman (1968), also referred to in the synonymy of Clerodendrum, is a synonyni of Capparis L. in the Capparidaceae. The Volkmannia of Sternberg (1825) belongs in the synonymy of Naias Juss. in the Naiadaceae. Kempfera Adans. is a synonym of Ghinia Schreb.

The pollen description given in the last previous installnent of these notes is taken from Huang (1972) and is doubtless based only on the Taiwanese species of the genus. Anisophylly in the genus is exhibited in some species where the leaves on the upper side of the branches are much smaller than those on the lower side, thereby not shading the latter as much as if they were of equal size. There seems to be no twisting of the twigs so as to place all sets of leaves in a horizontal plane as is seen in such non-verbenaceous generd as Ixora, Psychotria, Eugenia, etc.

Corner (1952) tells us that the flowers in most species of Cleno334
dendrum are mostly pollinated by butterflies and bees which suck the nectar from the base of the corolla-tube. In most species the stamens and style project from the lower side of the flower, the staniens forming a landing platform for the visiting insects, and the pollen is deposited on and is carried away on the underside of the insect. The flowers usually last more than a single day; the stamens mature first, then curl back under the flower, leaving the style, previously held beneath the stamens, to replace them as the landing platform. This does not apply to the species in the section Cyclonema where the stamens and style arch over the top of the flower and one of the petals is modified into a lower lip which serves as the landing platform fo the visiting insect -- the pollen then being carried on the upper side of the insect. Red-flowered species, of course, are mostly pollinated bv birds.

The fruits are characteristically eaten by birds and the seeds thus disseminated, and this applies to the species in all sections. "In most species the calyx develops into a most characteristic red, shiny, fleshy star on which the black berry is seated..... The green berries, in ripening, often pass through metallic shades of green and purple before turning black." It is to be noted that the fruit is not a "berry" as Corner (and some other writers) describe it, but is invariably a drupe. The fruiting-calyx which he describes as though for the genus as a whole actually has the characteristics which he enumerates only in a few primarily Asiatic species.

Corner also states that "Anong Indian and Malay peoples magical properties are attributed to many of the species. Their Malay names Panggil Panggil, Bunga Panggil, Sepanggil and Pepanggil, indicate a power of summoning spirits, and another of their names Setawar has been defined as a 'spiritual antiseptic'........But whether Malays really distinguish the species by separate names and exactly why and how they have come to regard the plants in such a light are problems needing further investigation. It is said that the projecting staneens suggest beckoring armis and that the Malays use the plants for a magical summons when setting traps for animals like the mouse-deer."

It is worth noting that early nerbalists often referred to one species of this genus as arbor fortunata and another as arbor infortunata, leading to Linnaeus' chose of specific epithets for two of his species. Rehder (1927) asserts that both of these species grow in Sri Lanka, but actually only C. infortunatum is found there; C. fortunatum is found in Assam, China, Tonkin, and Java, probably originally native only in China and introduced elsewhere for its supposed beneficial properties.

Martin (1946) confirms the fact that the seeds are without endosperm or else that the investing endosperm is "negligible". He includes the genus in a list or genera with an investing endosperm in an othewise non-investing family.

Shah, Poulose, \& Unnikrishnan (1969) have studied the nodal anatomy of three species of Clenodendrum, each exhibiting a different type. Marsden \& Bailey (1955) discuss in detail the dual nature of the leaf-traces in the genus. "They found two procambial strands, even in the young leaf primordia, and consequently defined a fourth type of node (in addition to the three proposed by Sinnott, 1914)
which exhibits a single gap through which two discrete strands supply the leaf-base. This fourth or 'Clerodendron-type' of node has the midribs of one orthostichy of decussate-opposite leaves arise from two sympodial strands which supply no other midribs (Philipson \& Balfour, 1963)." The other types (parastichy) are known as the Piperaceae type, the Casuarinaceae type, and the Calycanthaceae type.

There has been considerable controversy over the correct spelling of the generic name. Lawrence (1951) notes that "Authorities differ in usage as to the correct spelling of this generic name. Rehder (1949) et al. have used Clerodendron, but Linnaeus, the author of the name, used Clerodendrum in Species plantarum ($\mathrm{p} .637,1753$) and ill Generd plantarum, ed. 5 (no. 707. 1754). The spelling was changed by Adanson (1763) and so adopted by Benthanl and Hooker (1876). However, the Rules (ed. 3) provide no authority for changing the original spelling employed by Linnaeus." Santapau (1961) has summed up the situation, saying "Most of our floras have adopted the spelling Clerodendron, and some botanists object to the change to Clerodendrum on the plea that etymologically the ending in on is more correct. Linné gave Clerodendrum in his Sp . PI. p. 637, 1753, and in Gen. Pl. p. 285, 1754; the same spelling was followed in the second and third editions of Species Plantarum published during the life of Linné. I have been unable to trace who the first author was to change the spelling to Clerodendron; but Sprengel in Syst. Veg. 1825 did use the altered spelling, and thereafter many authors follow Sprengel. It would appear, however, that in spite of the etymology of the word, Linné did not adopt the spelling Clerodendrum by chance, since he used it in all his major works from 1753 onwards. This spelling, then, is not an orthagraphic error, but an intentional selection on the part of Linné, and must be retained in accordance with Art. 73 of the Code." A glance at the generic synonymy (given in the first installment of this series) will show that Linnaeus actually used the spelling clerodendrum as far back as 1737 when he deliberately changed the orthography of Burman's Clerodendron. Adanson also later adopted Burman's spelling in his 1763 work. Westman in 1744 used Burman's spelling and it was also used in edition 7 of the Genera Plantarumil (1767). Perusal of the bibliography of the genus shows that no less than 258 authors have adopted Clerodendron and 144 have adopted Clehodendrum; Asher, Bocquillor, Carrière, Edqeworth, Melchior, Mohl, Neminich, Plowden, Standley, Wallich, and Willdenow actually used both forms -- Plowden (1969) uses both spellings in the same work (-um on p. 247, -on on p. 41), while Carriêre (1866) used -on in his text and -um on the illustrative plate. Both spellings have been used from 1737 to 1985.

The $-u m$ spelling is adopted in Linneus, Gen. Pl., ed. 1 (1737), 186, wd. 2 (1742), p. 290, ed. 3 (1743), p. 223, ed. 4 (1752), p. 323, ed. 5 (1754), p. 285, and ed. 6 (1764), p. 325, and in Sp. PI., ed. 1 (1753), p. 637. In Gen. Pl., ed. 7 (1767) the -um spelling is used in the index and the -on spelling in the text. Willdenow (1802) spells it -on on p. 6 and -um on pp. 386--388. Article 71 of the Code states that there is ground for argunent on the correct spellillg of a Linnean generic name ONLY if the spelling ditfers in Sp. Pl., ed. I, and Gen. PI., ed. 5. Since the spelling adopted in both of
these works is -um there can be no valid argument.
In 1934--1936 I had occasion to examine carefully the material of Clerodendrum preserved in the Linnean Herbarium at the Linnean Society headquarters in London. Herewith are the results of my examination: In the Linnean Herbarium, under genus 784, Cornutia, specimen number " 2 " is unnamed, but bears on the top of the sheet the notation "CLERODENDRUM" [Mr. Savage stated to me at the time that this style of generic name annotation on the top of a sheet was d very old one of Linneus', later discarded] and "ə India". The specimen is plainly Clerodendrum incisum var. macrosiphon (Hook. f.) C. B. Clarke. Jackson, in his notes on the Linnean Herbarium, asserts that the sheet is also annotated "Br", meaninq Patrick Browne, and that the "India" really means "India [occid.]" It seems to me that this is incorrect. The species is not known from either the West Indies (where Patrick Brown collected) nor western India. The scrawl which he interpreted as " Br " is more probably the initial "D" and may well stand for "Dalman", as Jackson himself interprets a similar scrawl on the tenth specimen under Vitex ["V. pinnata"] froill India.

In the Linnean Herbarium, under genus 788, Volkameria, sheet number "l" is annotated "aculedta" in Linneus" own handwriting and is plainly Clerodendrum aculeatum (L.) Schlecht. Sheet number "2" is also annotated as "aculeata" by Linneus, but seems, rather, to be C. inerme (L.) Gaertn. Sheet number "3" is labeled "inermis" in Linneus' handwriting and is plainly C. inerme. Sheet number "4" is also labeled "inernis" and is also plainly that species; it bears the additional notation: "(Vo.) Douglassia Houst. in Millero". Sheet number "5" is annotated "serrata" in Linneus' handwriting and has the additional notation "Clerodendr."; it is plainly C. serratum (L.) Moon. Sheet number "6" is labeled "scandens" in the handwritiny of the younger Linneus (Linneus filius) and bears two tickets written by Kønıg, one reading "Volkameria Scandens. Folia bifaria, oppositis, corymbis laxis, spicatis ad altissima arboreo Scandens. Folia approximata undulata. Habitat ad Flum. magnum Monesi-Mote Kandal." and the other reading "Volkameria scandens. Habitat in vastis sylvia Zeylonae, super scandit arbores altissima eisque coronat suio floribus niveis. K甘nig 77." and on the reverse side "V. inermis, Scandens, fol. ramulis tomentosis, fol. cordatis-ovatis, glaberrimis. Pedunculi terminalibus: ramuli dichotomi." Jackson affirms that the note "KZnig 77" is in the handwriting of Linneus filius. The specimen is plainly Glossocarya scandens (L. f.) Trimen.

In the Linnean Herbarium, under genus 789 , we find that the generic name on the lower left-hand corner of the outside of the original genus cover is spelled "Clerodendron", while on the inside of the back cover it is spelled "Clerodendrum". The generic name is not repeated on sheets "1" to "7", but on sheets number "8" and "9" it appears as "Clerodendrum". Sheet number "l" is annotated as "infortunatum" in Linneus' handwriting. Sheet number "2" is labeled "fortunatum" also in Linneus' handwriting. Sheet number "3" is labeled "Phlomoides" in the handwriting of Linneus filius and also bears the additional notation "KXnig". It is plainly C. pheomidis L. f. Sheet number "4" bears two fragments on the upper portion which, according to Jackson's notes, are the only Linnean ones un the sheet; the lower
specimen bears a notation in J. E. Sinith's handwriting "2 e Batavia D. Banks. J. E. S." and was added afterwards according to Jackson; the sheet bears the name "calamitosum" in Linneus" handwriting at the bottom and it is plainly C. calamitosum L.

Sheet number "5" is annotated "paniculatum" in Linneus" hand and bears the additional notation "Juan bonge"; it is characterized by its triangular-lobed leaves and certainly represents what we now know as C. paniculatum L. Sheet number "6" is unnamed and bears no notes, but is plainly what we now call C. philippinum f. multiplex (Sweet) Mold. Sheet number "7" is also unnamed and bears no notes, and is also plainly C. philippinum f. multiplex. Sheet number "8" is unnamed, but bears the notations in Linneus' own handwriting [verified by Mr. Savage] "Knoxia ? scandens" arid also "Knoxia 2 Browne 140.t.3.f.3." also in Linneus' handwriting. It is plainly Aegiphila elata Sw. Sheet number "g" is unnamed and bears no notations on its obverse (front) side, but on its reverse side it has in Linneus' own hand [verified by Mr. Savage:.] "Clerodendrum", then in darker ink and a heavier pen [but also in Linneus' hand according to Savage;] "No. 8 a Millero" and then in the former light ink and fine pen "Cal. amplius 4 fidus obtusus. Cor. 4 -fidus. Stail. 4 longiss. Stylus capillaris semi-bifidus." It must have been collected by Philip Miller for Linneus in the Chelsea Garden. It is plainly Aegiphila deppeana Steud.

Savage (1945) gives "807" as the generic number for Ovieda, "809" for Volkameria, and "810" for Clenodendrum.

Loudon (1830) divided the genus Clerodendrum into 2 sections: (1) quinquedentata with the calyx-rim few-toothed or subentire, and (2) Quinquepartita with the calyx 5 -parted. He kept Volkameria separate to include V. aculeata L. and V. japonica Thunb.

Following the excellent work of Briquet (1895), I am accepting, with a few modifications, his classification:
Subgenus 1. Volkameria (L.) Briq. Corolld infundibular, its tube less than 2.5 cm . long, the limb 5 -parted; pyrenes plainly united in pairs; petioles usually spinescent dfter the blade is shed. Example: C. aculeatum (L.) Schlecht.
Subgenus 2. Euclerodendron (Schau.) Thomas. Corolla infundibular, its tube straight, less than $2.5 \mathrm{~cm} . \operatorname{long}$, the limb spreading, 5 -parted, the lobes subequal; pyrenes free or only very obscurely united.
Section 1. Axilliflona Schau. Cymes few-flowered, shorter than or as long as the leaves, the upper ones building a bracteose panicle; fruiting-calyx short-cupuliform, hardly enlarged in truit. Examples: C. ternifolium H.B.K., C. inerme (L.) Gaertn., C. rusbyi Mold., C. glabrum E. Mey., C. umbellatum Poir., C. tomentosum (Vent.) R. Br., C. calamitosum L.
Section 2. Penduliflona Schau. Cymes grouped in a terininal, naked, loose, more or less pendent panicle; truiting-calyx greatly enlarged. Examples: C. nutans Jack, C. wallichii Merr.
Section 3. Densiflora Schau. Cymes in compact panicles building 1 or more small heads, axillary or pseudo-terminal; fruitingcalyx enlarged. Examples: C. philippinum Schau., C. lindleyi Decaisrie, C. bungei Steud.

Section 4. Paniculatae Schau. Cymes in capitate or subumbelliform terminal panicles; leaves mostly hairy, not at all or only obscurely squamulose beneath; fruiting-calyx enlarged. Examples: C. infortunatum L., C. viscosum Vent., C. villosum Blume.

Section 5. Squamata Schau. Cymes in broad, open, loose, more or less naked, terminal panicles; leaf-blades definitely squamulose beneath; petioles joined by a thick ring of hairs. Examples: C. kaempferi(Jacq.) Sieb., C. japonicun (Thunb.) Sweet, C. intermedium Cham.

Subgenus 3. Cyclonema (Hochst.) Gurke. Corolla-tube plainly zygumorphic, often swollen, bent, usually less than 2.5 cill. long, its limb plainly bilabiate, obliquely 5 -lobed, the anterior lobes exceeding the posterior ones and more or less concave; stamens arching upwards. Examples: C. serratum (L.) Moon, C. murecoides (Hochst.) R. Br., C. diocolor (Klotzsch) Vatke, C. ugandense Prain
Subgenus 4. Cornacuhinia (Savi) Briq. Calyx 4-or 5-lobed; ovary spongy, wrinkled. Example: C. acerbianum (Visian.) Benth.
Subgenus 5. Siphonanthus (L.) Schau. Corolla-tube very long, over 5 cm . in length. Examples: C. indicum (L.) Kuntze, C. incisum Klotzsch
Briquet's Section Racemiflora Schau. seems to belong in Subgenus
3, Cyclonema.
If the classification by Thomas (1936) is combined with that of Briquet, a kev to the supraspecific groups may be written as follows:

1. Corolla-tube zygomorphic, conspicuously swollen in front, more or split tu the middle posteriorly, the limb zygomorphic and bilabiate, the anterior lobe much larger than the others and arched; calyx-lobes mostly round; fruit not separating. Subgenus Cyclonema.
2. Calyx-lobes acute; cymes axillary. Section Pleurocymosa. 2a. Calyx-lobes round; cymes forming a terminal panicle.
3. Panicle more or less foliose, loosely branched.
4. Calyx-lobes narrowly elongate, about 4 min. long, hairy within; corolla-tube about 12 min . long. Section Oligocymosa.
4a. Calyx-lobes semicircular to semi-elliptic, about 2 mm . long, not hairy within; corolla-tube 8--10 min. long. Section Chaunocymusa.
3a. Panicle not foliose, with short side branches, almost spicate. Section Stacheocymosa.
la. Corolla-tube actinomorphic, straight, narrow, the limb actinomorphic or slightly zygomorphic; calyx-lobes acute; fruit separating or rarely coherent in $2^{\prime} s$.
5. Calyx-lobes only 3. Subgenus Tridens.

5a. Calyx-lobes more than 3.
6. Calyx-lobes 4 or 5 ; ovary spongy, wrinkled. Subgenus Cornacchinia.
6a. Calyx-lobes 5; ovary smooth
7. Pyrenes coherent in pairs of 2. Subgenus Volkameria.

7a. Fruit separating into 4 separate pyrenes. Subgenus Euclerodendron.
8. Leaf-blades covered with conspicuous shield-like resinous glands beneath. Section Squamata.
8a. Leaf-blades usually not conspicuously squamose beneath. 9. Natives of Asia or the Americas.
10. Corolla-tube very long, over 5 cm . in length, the
limb somewhat oblique. Section Siphonarthus.
10a. Corolla-tube less than 5 cm . lang.
11. cymes axillary or pseudo-terminal.
12. Cyines few-flowered, as long as or shorter than the subtending leaves, the upper ones sometimes forming a foliose panicle. Section Axilliflora.
12a. Cymes in densely congested panicles, forming 1 or more heads. Section Densiflora.
lla. Cymes terminal.
13. Inflorescence a naked, loose, more or less pendent panicle; fruiting-calyx accrescent. Section Pendulíllora.
13a, Inflorescence not pendulous.
14. Inflorescence erect, racene-like, very bracteose; fruiting-calyx campanulate, not much accrescent. Section Racemiflora.
14a. Inflorescence in the form of capitate or unbelloid panicles; fruiting-calyx accrescent. Section Paniculata.
9a. Natives of Africa.
15. Calyx split $1 / 2$ or more, 5--30 man. long, anipliate from the base, open-campanulate, the lobes often colured like leaves; fruiting-calyx larger than the fruit; branches mostly hollow.
16. Calyx about 10 min . long, split to the base, the lobes narrowly lanceolate-linear; stem longitudinal-
ly furrowed; leaf-blades toothed. Section Stenocalyx.
16a. Calyx split $1 / 2$ to $4 / 5$ its length, the lobes 0 -
vate or lanceolate, acute; sten not furrowed.
17. Calyx round, $5--10 \mathrm{~mm}$. long, split $1 / 2$ to $2 / 3$ its length, the lobes lanceolate, awl-shaped or acute to obtuse; calyx not articulate; corolla-tube less than 2 cm . long. Section oxycalyx.
18. Calyx-lobes obtuse. Subsection Obtusata. 18d. Calyx-lobes not obtuse.
19. Calyx-lobes acuminate. Subsection Acuminata. 19a. Calyx-lobes apiculate. Subsection Apiculata.
17a. Calyx more or less pentagonal, 10--30 nim. long, split $2 / 5$ to $4 / 5$ its length, mostly articulated into a spheric-tubular base and a campanulate limb, the lobes ovate, colored like petals; corolla-tube 1.5--15 cm. long. Section Macrocalyx.
20. Inflorescence capitate. Subsection Capitata. 20a. Inflorescence not capitate.
21. Inflorescence spicate. Subsection Spicata. 2la. Inflorescence loosely cymose-paniculate. Subsection Laxiflona.

15a. Calyx shallowly emarginate to $\mathrm{split} 1 / 2$ its length, $1.5--10$ min. long, tubular-campanulate, mostly elongate; fruiting-calyx smaller than the fruit [except in Cylindrocalyx]; branches usually not hollow.
22. Corolla-tube at least. 4 or 5 times as long as the calyx; flow-er-buds opening laterally; stamens and pistil surpassing the corolla-tube by $3--4 \mathrm{~cm}$.; leaves sessile or subsessile, elongate, strongly sinuate. Section Kanocalyx.
22a. Corolla-tube usually only $1--3$ times as long as the calyx; flower-buds opening terminally; stamens and pistil surpassing the corolla-tube only by $0.5--2.5 \mathrm{~cm} . ;$ leaves plainly petiolate.
23. Calyx about 1 cm . long and 4 mm . wide, tubular, pentagonal, yellow-green, foliaceous, split $1 / 4$ to $1 / 3$ its length; leaves the same color on both surfaces, the venation not very prominent; branches unarmed; fruiting-calyx larger than the fruit. Section Cylindrocalyx.
23a. Calyx $1.5--10 \mathrm{~mm}$. long, about 2 mm . wide, rarely wider, round; leaves differently colored on the 2 surfaces, the venation conspicuous; branches mostly armed with thorns; fruitingcalyx smaller than the fruit.
24. Calyx cylindric-tubular, the sides parallel, 4--10 mm. long, split $1 / 5$ to $1 / 4$ its length, with more or less plain longitudinal ribs, the lobes short-triangular, not divergent; leaves never cordate. Section Siphonocalyx. 25. Inflorescence capitate. Subsection Cephalata.

25a. Inflorescence loosely paniculate, not capitate.
26. Panicles foliose. Subsection Phyllothynsoidea. 26a. Panicles not foliose. Subsection Thyrsoidea.
24a. Calyx not cylindric-tubular.
27. Calyx very short-campanulate, scaly, 2--4 mm. long, split
$1 / 3$ to $1 / 2$ its length, the lobes wide, divergent, of ten colored; fruiting-calyx ampliate. Section Eurycalyx.
27a. Calyx campanulate-infundibular, the base more or less tubular but ampliate from the middle upwards, 1.5--6 mm. long, split about $1 / 3$ its length, the lobes elongate, acute, more or less spreading; fruiting-calyx more or less narrowly infundibular.
28. Plants glabrous with more or less yellow-brown articulate appressed-silky hairs even on the flower-buds; leaf-blades cuneate to cordate; stem often margined, with thorns; leaf-margins never involute; sinuses between the calyx-lobes acute. Section Mecrocalyx.
29. Inflorescence paniculate; buas glabrous.
30. Panicles open and loose. Subsection Paniculata.

30a. Panicles racemiform, on a long peduncle; stems hollow. Subsection Corymbiflora.
29a. Intlorescence racemiform, many-headed; flower-buds and young parts with deciduous yellow-brown hair. Subsection Pluricapitata.
28a. Plants glabrous or with more or less white hairs; flower-buds glabrous; leaves mostly small, more or less cuneately narrowed into the petiole; stems always round,
unarmed; leaf-margins more or less involute; sinuses between the calyx-lobes more or less rounded. Section Odontocalyx.
Kuntze (1891) discusses in detail his concept of the synonymy of the genus: "Clerodendron L. (1737) g. pl. 517 (1753; l Art) incl. Ovieda L. (1737) g. pl. 170 genus erroneum ob stamina 5 false descripta eronee positum') incl. Volkameria L. 1737 non 1735* (1753: 2 Arten) \& Ligustroides L., 'Houst.' hort. Cliff. 480 (1738) \& Siphonanthemum Amman 1741 act. ac. petr. 'ad annam 1736' p. 213-215 $=$ Siphonantha L. 1742. Volkameria wurde zunychst zu gelten haben, wenn die bisherige Annahme richtig ware, dass volkameria L. $1735=\mathrm{L}$. 1737 wayre; aber der Name von 1735 gilt fur Sesamum L. 1737! Dan wurde Siphonanthemum Amm. '1736' gelten, wenn dieser Name wirklich 1736 publicirt worden ware; das ist aber nicht der Fall, denn dieser Publicationen der Petersburger Academie erschienen bis g Jahre spater (z.B., '1738' erst 1747) als nachdem sie der Academie Uberreicht worden waren; vol VIll ad annum 1736 trygt als Publicationsdatum auf der Titel unten den Datum 1741 und Amman erwahnt in seinen Briefen an Linné bis 1740 diese in der Mitte des vol Vlll stehende Publication noch nicht, wahrend er sonst an Linne doch alles derartige mitheilte; vergl. Smith Correspondence of Linnaeus II 191--203. Es kommen nun noch Clerodendron und Ovieda in Concurrenz: Ovieda ist zwar bereits auf Seite 170 in der 5 . Classe veryffentlicht und walde $z u$ gelten haben, wenn die gunstigere Stellung nicht eben bloss durch den Fehler '5 Stamina' herbeigefluhrt und so Ovieda nur von dem didynamen clerodendron entfernt worden walre. Mithin bleibt Clerodendron bestehen. Ligustroides L. 1738 angeblich 1737 publicirt ist dem Synonym nach Cl. aculeatum Gris. (L.)" l never cease to be amazed at the meticulous care with which Otto Kuntze documents his exhaustive bibliographic research, not only in regard to the present genera, but on so much of the entire then-known plant world! It is most unfortunate, in my opinion, that his guiding principle of strict priority of publication to validate the acceptance of scientific names is not followed today.

In this connection, it is of interest to note Poiret's (1804) argument in favor of the separation of Clerodendrum and Volkameria as accepted valid genera. He avers that in Clerodendrum the pistil is "termine par un stigmate simple" and the fruit "contenent quatre offlets monospermes". while in Volkameria "le stigmate est bifide, \& que chacun des offlets renfermes dans les baies contient deux semences".

Griffith (1854) makes an interesting observation: "The situation of the flowers in Volkameria is certainly reversed, neither can l yet tell what is the cause of this. The 5th petal being certainly next the axis. That the fissure by which the corolla is rendered unilabiate is carried thro' the 2 petals corresponding to the upper lip of other plants of the Order is proved, 1st by the aestivation and 2nd hy the situation of the stamina. There is certainly some difference between the destivation of this Order, and of Labiatae, one lohe of the upper lip of Volkameria being altogether internal."

Firminger (1918) says of Clerodendrum: "A genus that comprises some of the most beautiful plants with which our gardens [in India] are adorned. Nothing can possibly surpass the loveliness of some of
the species." He goes on to quote Lindley's observation: "Whoever.. shall investigate the true distinctions betweell the bedutiful species of Clerodendron with scarlet inflorescence, will find as ample a harvest of confusion to be reaped as he can desire." Firminger also states that "Some [species] occasionally yield seed [in cultivation], and all way be propagated by cuttings put down in the rains or from offsets or suckers which most species send up abundantly.... Flowers are produced from the top of the current season's shoots; therefore cut away wood of the previous season to within two or three buds of the base." Grindal (1960) tells us that in Indid cuttings of these plants are placed in the ground for making hedges in February. Baines (1877) and Duro (1845) provide very detailed instructions on the proper culture of the many cultivated species in greenhouses in temperdte climates. Smiley (1960), however, warns that outdoors they tend "to become weedy and aggressive........hardly suitable for permanent planting, being difficult to maintaill in a desirable form."

Corner (1964) reminds us that "Among dicotyledons there are numerous and outstanding tropical genera that consist of large trees, small trees, shrubs, herbs. and in some cases, even climbers, showing how a large part of the spectrum of plant form on land has been evolved within the limits of a single genus" and gives Clerodendrum as a good example (along with such genera as Cassia, Gardenia, Hibiscus, Randia, Solanum, and Vernonial.

Junell (1934) discusses the gynoecium morphology of the genus on the basis of 9 species representing each of the 5 subgenera which he recognizes. He comments that "Mit Ausnahne der Sektion Volkameria besitzen alle Clerodendron-Arten eine Frucht, die aus vier einsamigen Steinen besteht. Bei der Sektion Volkameria sind die Samen paarweise vereinigt $z u$ zwel lateralen, zweisamigen Steinen." He also notes that "Die Entwicklung der Staubblytter verlyuft normal. Die Pollenbildung ist simultan.......Die Entwicklung der Embryosacks erfolgt nach dem Normaltypus," but the actual form of the embryo-sac differs greatly (cfr. under C. speciosissimum and C. ugandense, the former a species of Euclerodendron and the latter of Cyclonemal.

Junell goes on to say that "Der Fruchtknotenbau ist bei den einzelnen Sektionen ziemlich verschieden. Fur alle untersuchten Arten gemeinsam ist der Umstand, dass die beiden Plazenten erst unten in der Nahe des Grundes der FruchtknotenhUhle verwachsen." In Volkameria "Die mittleren Partien der Fruchtblatter sind ein wenig verdickt. Die Fruchtblattrander ragen verhaltnissmassig weit zwischen sehr seichte Furchen ein. Der Fruchtknoten ist....angowあhnlich klein." In Euclerodendron he notes that "Von den Fruchtblattmitten dringen Ausbauchungen in der Plazenten ein. Dadurch dass die Fruchtblatter nicht an der ganzen Strecke, wo sie einander anliegen, miteinander verwachsen sind, werden die Plazenten........gespalten. Die Fruchtblattrander sind mit gut ausgebildeten leitendem Gewebe versehen, das den verhaltnismassig grossen, hemianatropen Samenanlagen gegen die Mikropyle hin folgt. Auf den Plazenten und die Fruchtblattrandern befinden sich grosse DrUsen." In Cyclonema "Bei Betrachtung der Schnitte fallen unmittelbar die ausserordentlich grossen und dicken Fruchtblattrynder auf. Besonders im oberen Teil des Fruchtknotens treten sie stark hervor. Sie breiten sich Uber die Samenanlagen aus,
welche ungewthnlich tief befestigt sind und nicht in den oberen Teil des Fruchtknotens hinaufreichen......Die Samenanlagen sind an der Plazenta mit Hilfe eines langen, gekruminten Funikulus befestigt. Zufolge der Anschiwellung der Fruchtblattrander muss der Funikulus unmittelbar, nachdem er die Plazenta verlassen hat, sich ungefyhr in rechtem Winkel krummen......Dadurch wird das Plazentaleitbundel beim Ubergang zur Samenanlage stark S-f४rmig gekrummt......der Funikulus [geht] unmittelbar oberhalb der Mitte der Samenanlage aus. Keine furchen dringen in die Plazenten ein.
"Die dicken Fruchtblattrander sind mit deutlich ausgebildeten leitendem Gewebe ausgerustet. Im ubteren Teil des Griffels wachsen sie Pollenschlyuche in einem Griffelkanal, dessen Wande nit grossen Drusenzellen besetzt sind, dis bisweilen zu kleinen Drusenhaaren auswachsen. Beim Ubergang dieses Kanals in die Fruchtknotenhohle... setzt das Drusengewebe seitlich fort, verlauft auf der Oberseite der eingebogenen Fruchtblattrander und bildet an den eigentlichen Fruchtblattrander entlang eine verhyltnisinassig breite Zone nach unten." In Cornacchinia he notes that "In die Plazenten dringen seichte Furchen ein. Die mittleren Partien der Fruchtblatter sind nur ganz wenig verdickt." In Siphonanthus "Von den Fruchtblattmitten werden Ausbauchungen gebildet. Die Fruchtblattrander sind verhaltnismassig dunn und die leitendem Gewebe versehen. Keine Furchen dringen in die Plazenten ein."

Dop \& Duffas (1928) have investigated the water_production by certain cells in unopened flower-buds of C. trichotomum by whose pressure the calyx eventually opens up.

Sharma \& Mukhopadhyay (1963) discuss the problem of varying chromosome numbers in Clerodendrum: "Species of Clerodendron studied by previous authors show a range of chromosome numbers between 24 and 108. The haploid numbers so far recorded are 12 and 23. In the present investigation $2 n=52$ chromosome have been seen in C. infortunatum and all its varieties as well as C. minahassae, C. fragrans, C. nutans, C. siphonanthus and C. squamatum. $2 n=46$ chromosones have been tound in C. thomsonal var. I, C. inerme and C. splendens whereas $2 n=48$ is present in another variety of C. thonsonae. C. ugandense shows a somatic chromosome number as high as 184 . The number $2 n=30$, noted in the present work, is the lowest of all species worked out in the present investigation. In addition to the haploid numbers 12 and 23 recorded previously.......the present investigation provides evidences of the existence of two more haploid numbers i.e. 26 and 15... The number $2 \mathrm{n}=184$, being a multiple of 23 , once more indicates the occurrence of polyploidy" in the genus "and is the highest number so far noted. The nature of [the] origin of Clerodendron, whether monoor polyphyletic, is yet to be ascertained." Emberger (1960) and Riley (1963) give the sporophytic numbers as $24,26,46,48,60$, ca. 92 , and 108. It must always be borne in aind that some of these determinations may be based on misidentifications of the plant material being investigated -- e.g., one of the so-called "varieties" of C. thomsunae mentioned above may well actually have been C. umbellatum Poir., a species very widely cultivated as "C. thomsonae".

Dop (1921) discusses the geographic distribution and affinities of the Indochinese suecies. Crevost \& Petelot (1934) assert that Clero-
dendrum comprises a "Groupe d'arbres ou d'arbrisseaux répartis dans les régions tropicales et dơnt les vertus thérapeutiques dans l'ordre des traitements des affections syphilitiques semblent identiques."

Vyas (1964) describes a Clerodendrum-Capparis ecologic zone at 1300--1500 m. altitude in the hills of Rajasthan, India. Rao \& his associates (1963) report that Clerodendrum, with Carissa and Securinaga, forms the principal ecologic scrub formation in raised stony ground on Rameswarem Island, India, and that there is a ClenodendrumAcanthus association in the salt-pan areas of this island. They report that Clerodendrum and Acanthus together form a distinct belt next to the mangrove association on the saline flats of the island, followed landwards by the Fimbristylis-Cyperus belt. The clerodendrum species here referred to is undoubtedly C. inerme.

Puri (1960) asserts that the sal (Shonea nobusta) tropical, moist, deciduous forests of Uttar Pradesh, India, have a groundcover of dense Clerodendrum and Mallotus, as well as heavy grasses, in areas of dry subsoil, frosted regeneration, with pure stands of low-quality crops on the clay alluvium; areas of wet subsoil have Calamus and exhibit drought mortality. Clerodendrum is common in the lower canopy of sal forests in Assam. Snowder (1953) found it common in subtropical comreur,ities of fire-swept bush- and woodlands in Uganda.

Bor \& Raizada (1954) aver that "The Clerodendrons are great favourites in Indian gardens on account of their showy flowers and often handsome foliage. [But] They never show to such advantage as they do in their natural homes in the gloom of the evergreen forest where they develop their beautiful panicles to perfection."

Malaviya (1963) discusses the occurrence of stone-cells in 12 species of the genus commonly cultivated in Bombay gardens. She reports that they seem to be present only in three species where the sclerenchyma or phloent fibers are absent. The stone-cells give mechanical strength, and the presence of some kind of crystals in them suggests a repository of excretory or secretory products. She found that C. infortunatum, C. minahassae, C. philippinum, and C. splendens have brachysclereids developed from transformed parenchyma cells of the cortex or pith, while C. accleatum and C. inerme have spheroidal sclereids developed from converted collenchyma cells of the cortex.

Winter characters of the twigs, buds, leaf-scars, and pith are described by Trelease (1931) as though for the whole genus, but are based solely on examination of a single cultivated species, C. trichotomum. This is a perfect example of many morphologic, physiologic, genetic, and ecologic descriptions which are reported as though applying to a whole genus when actually they are based on examination of only one or a few (often even unrepresentative) species. In the present case examination of one of approximately 570 taxa can hardly be regarded as producing "generic" characters!

Takhtajan (1969) lists clerodendrum as a member genus of the socalled Boreal-Tertiary angiosperm flora. At least seven species are known from fossil remains: C. europaeum Ettingsh. from the Early Tertiary of England, C. latifolium Friedrich from the 01 igocene of Germany, C. robustum Klotzsch from the Pleistocene of the Cameroons, C.
 (L.) Moon from the Lower Pliocene of France, and C. thomasii Mold.
from the Pleistocene of the Cameroons. Wolfe (1969) reports an unnamed species of the genus from the Middle Miocene of northwestern North America on the basis of fossilized pollen material.

Van der Pijl (1969) affirms that the calyx (in some species of the genus) provides contrasting color for essentially black fruits, as do the red arils sometimes seen in other groups, serving to attract birds to effect seed dissemination.

In their work on myrmecophily in plants De Beaufort \& Schnell (1966) list the following species of Clerodendrum known to them as exhibiting this interesting adaptation: C. angolense GUrke, C. capitatum (Willd.) Schum. \& Thonn., C. grandifolium GUrke, C. speciosissimum Van Geert, C. triplinerve Rolfe, and perhaps also C. guerkei J. G. Baker. They note that "Ces espêces ont en commun des tiges creuses sur une grande longuer, parfois un peu renflées localmente, et avec, dans certains cas, des pores, de position variable, et parfois des cicatrices alignees avec ceux-ci." De Wildeman (1930) also discusses this fascinating subject. Actually, to be added to the above list of species are the Asiatic C. fistulosum Becc. and C. phyllomega var. myrmecophilum (Ridl.) Mold.

In speaking of cultivated species of Clerodendrum Synge (1956) notes that "The of.ten charmingly fragrant flowers have two prominent characteristics, namely, the very frequently long, slender tube of the corolla -- in some species 4 or 5 in. long; and the much exserted stamens which sometimes stand out over 2 in . beyond the corolla. The genus includes undoubtedly some of the most impressive and gorgeously coloured of stove and greenhouse plants." He avers that for the climbing species "A mixture of equal parts of peat and loam, with a little leaf-mould or decomposed manure and some charcoal or sand" is most suitable. The shrubby species "should be cut close back soon after flowering, and be kept somewhat dry during the winter, in a temperature of about $55^{\circ} \mathrm{F} . "$ Propagation, he says, should be by cuttings "put in when the plants are cut down" which will root readily. These cuttings are to consist of $3--6$-inch long sections of the stems or side branches, "inserted in sandy soil, watered, and then plunged in a bottom heat of $70^{\circ} \mathrm{F}$." If propagation is by seed, these may be sown when they ripen, or in the spring, and will probably flower in the second season. "The climbing varieties do not root quite so readily" and the cuttings, when planted in sand, should be covered with a bell-jar. He continues with many more valuable details on the cultivation of glorybowers. Bose (1965) recommends them for large-potting. Woodrow (1910) asserts that many species are "of easy culture in ordinary good garden soil, regularly watered and slightly shaded" in India.

Bailey (1972) refers to Clenodendrum as "Excellent outdoors in warmer parts of the U.S. They need well-draired garden soil. Twining species are valuable in cool to intermediate greenhouses, where they need good light without strong sun, high humidity and Basic Potting Mixture. Propagate by seeds or cuttings" of half-ripened wood kept at a temperature of about $70^{\circ} \mathrm{F}$."

Gibbs (1974) reports steroles present, as well as D-mannitol (a sugar alcohol) in at least some investigated species; tannins, Lbornesitol, and leucoanthocyanin are absent; saponins are present or
"probably present", as are triterpenoid saponins and/or sapogenins and other triterpenes. Nes and his associates (1977) found 24-betaethylsterol present.

Morton (1977) reports that the exported roots of Rauvolfia serpentina, as they arrive for entry into the United States, are often adulterated at their source with the stems of Clenodendrum species.

The genus is reported as an escape by Dean (1961) and Clark (1971) in the United States. l have confirmed this for the states of North and South Carolina, Georgia, Florida, Alabama, Mississippi, Louisiana, and Texas (1942, 1949, 1959, 1971).

The protandry of the flowers is compared to that of Aeschynanthus hookeri Clarke by Tirunarayana lyengar (1924). Hildrum (1970) found that short daylight and treatment with $0.5--1$ percent CCC resulted in earlier flowering, while long daylight days inhibited flowering and stimulated vegetative growth and taller stature. Howes (1974) reports that the genus nas flowers, in general, attractive to butterflies, who doubtless aid in pollination.

In regard to the puzzling Clenodendron epiphyticum Standl., Williams (1970) cites Brenes $\ell 2648$ and Lankester $\ell 296$ (type) from Costa Rica, commenting that "The specimens cited are almost certainly neither Verbenaceae nor are they Scrophulariaceae and perhaps represent two other families. The species was described by Standley with considerable hesitation and can perhaps never be pldced unless by chance." Nevertheless, two years later (1972) he placed it in the genus Gibsoniothamnus in the Scrophulariaceae, along with C. mimicum Standl., C. moldenkeanum Standl. \& Steyerm., and C. pithecobium Standl. \& Steyerim.

Considering the very wide geographic range of Clerodendrum, it is not surprising to find a plethora of common and vernacular names reported for it as a group. Included are "brinco de ama", "brinco de dama", "bunga panggil", "chance-tree", "clérodendre", "clérodendron", "clerodendrons", "fausse-volkamere". "flowers of magic", "fortune", "glory bower", "glorybower", "glory-bower", "glorybowers", "glory tree", "glorytree", "glory vine", "Glđcksbaum", "guardia civil", "jaman quina", "Kashmire-bouquet", "kembang boegana", "loosbaum", "Losbaum", "lotboom", "mbududhla", "oviède", "oviedée", "oviedone", "pagoda-flower", "panggil panggil". "pepanggil", "peragu", "péragu", "péragut", "Ryhrenblume", "sepanggil", "setawar", "siphonante", "tubeflower", "umquongo", "umqwaqwann", "volkamera", "volkamier", "volkanumerie", and "witches' tongues". Adam (1970) reports "dupérá ki ginêel" and "fugni gièn" for two unidentified African species. Burkill (1966) says that "tampang běsi", applied erroneously to Vitex vestita Wall., actually applies to a species of Clerodendrum. Narkiewicz (1981) asserts that in the so-called "language of flowers" Clerodendrum signifies "fortune sometimes favors the worthy".

Many diseases and pests are reported to attack clersdendrum [cfr. Riddick, k955, Westcott, 1950, 1956, \& 1971, Horst, 1979, Babu, $\overline{1977}$, Sydow, 1923, Beeli, 1920, Weiss \& 0^Brien, 1953, Seymour, 1929, Pirone, 1978, Burns \& Rotherham, 1969, Hansford, 1941 \& 1961, Hamid, 1966, Cummins, 1943, and Wiltshire, 1954 \& 1957]. Among these are Aecidium multidonum, Aspidiotus lataniae Sign., Asterinia entebbeensis (Uganda), Astérinia clerodendricola, Asterolecanium pustulans
(Cockerell), Balladynastrum clerodendri, Cercoseptonia clerodendri, Cercospora apii f. clerodendri (a leaf-spot, Florida), C. kashotoensis (a leaf-spot), Cerotelium duedaloides Cummins (Uganda), Clania cameri Hamps. (clerodendron case-worm, Pakistan [can be controlled by its parasite, Brachycorhyphus nursei Cam.], Coccus hesperidium (brown soft-scale), Coniothyrium clerodendri, Cuscuta reflexa Roxb. (a dodder, India), Didymaria clerodendri, Dimerina citricola, Haplosporella clerodendri, Heterodera marioni (Cornu) Goodey (a root-knot nematode), Hypolycaena phorbus (common tit butterfly, Australia), Meliola clerodendri Hansf., M.. clerodendricola P. Henn., M. durantae var. acutiseta (hansf.) Hansf., Uganda), M. sakawensis P. Henn., M. sakawens is var. acutiseta Hansf. (Uganda), M. sakawensis var. longispora Beeli (Zaire), Meloidogyne incognita (a root-knot nematode, Maryland), Orthezia insignis Douglas, Phyllosticta clerodendri Sydow (a leafspot), P. inermis (a leaf-spot), Physolospora clerodendri Sydow, Planococcus citri (a mealybug), Podosporium penicillium var. clerodendri, Pseudococcus adonidum (Targ.), P. citri (Risso), Pulvinaria psidii Mask. (green shield-scale), P. urbicola (Cockerell), Saissetia hemisphaerica (Targ.), S. oleae (Bern.), Septoria petrakiana (a leaf-spot), S. phlyctaenoides Berk. \& Curt. (a leaf-spot, South Carolina), and Tetrachia singularis. Takahashi (1932) reports that in Taiwan Clerodendrum serves as host to the whitefly, Aleurotuberculatus uraianus Takahashi, while Cohic (1968) reports it serving as host to another whitefly, Tetraleurodes russellae Cohic. Sobers \& Martinez (1964, 1967) discuss the symptoms, transmission, and pathogenicity of Cercospora apii f. clerodendri.

Brown (1968) informs us that species of Clerodendrum are the "commonest host" of the longhorn beetle, Dihamus cervinus Hope, the larvae of which are popularly known as "teak cankerworm" in northern India, Banglddesh, and Burma. It hides in the crown of the host trees by day and feeds mainly at night, gnawing irregular patches in the bark and sometimes girdling twigs and branches; it occasionally devours also the buds, petioles, and tender shoots.

Westcott (1971) lists the Zonate Ring-spot Virus as attacking clerodendrum in Florida.

Taxonomically it is worth noting that the genus Clerodendrum is placed in the Labiatae (Lamiaceae), section Verbeneae, by Reichenbach (1827, 1828, 1833), with Volkmannia Jacq. and Agricolaea Schrank as synonyms. He keeps Ovieda L. as a separate genus, with Siphonanthus L. as a synonym. He also retains volkameria L. as a separate genlus. Clerodendrum is also placed in the mint family by Dahlgren (1938) and by Novak (1961).

Ovieda was accepted as a valid genus by Limneus $(1737,1754)$ with valdia as a synonym, Siphonanthus was accepted with Siphonanthemum as a synonyII, and Volkameria was accepted with Duglassia as a synonym. This acceptance and synonymy were followed by Reichenbach (1778), Schreber (1791), and Haenke (1791). Cleianthus Lour, is retained as a valid genus by Barkley (1965).

The genus Agricolaea Schrank is classified in the Labiatae by Wittstein (1852), who claims that it was named in honor of C. A. Agricold (1772--1838), a physician at Regensburg, but Allen, in longhand notes on the margiris of his personal copy of Wittstein's book, claims
that it commemorates a "Johann Agricula", a pseudanym used by Geory Padrle (1490--1555), born in Marz, Saxany, died at Chemmitz, who wrote under the name "Johannes Agricola" or "Animonius". There was also another botanist with the same surname, Georg Andreas Agricola (1672-1738), born at Regensberg -- probably this was the man referred to by Wittstein as "C. A. Agricola".

Siphobora Baill. was originally placed in the Gesneriaceae, but the type species, S. commersonii, is Clenodendrum minahassae Teijsm. \& Binn., so the genus is obviously a synonym of Clerodendrum (unless Siphonanthus is again segregated as a separate genus because of its inordinately extended corolla-tubes, as is maintained by Linneus, Willdenow, Hiern, J. Britten, N. L. Britton, Nakai, Shall, and others). Kalaharia Baill. is often included in Clerodendrum; its spines, however, while superficially reminding one of the spinose Clerodendrum species, are moditied twigs and not merely petiole-bases.

Briquet (1895), in commenting on Adelosa Blume, says: "Diese liir vollig unbekannte Gattung wird von Baillon zu Clerodendron gezogen. Der Beschreibung nach scheint dieselbe doch durch den Bau der Frucht und des Samens ziemlich verschieden." The two genera are currently kept distinct.

Lindley (1870) says of Clerodendrum: "This genus is nearly related to Volkameria and Aegiphila, but is separated from the former by its fruit and from the latter by its pentamerous flowers." He adds: "The plants have slightly bitter sub-astringent properties, and on this account some of them are used in Indian medicine."

It is interesting to note how estimates of the number of taxa included in Clerodendrum have varied over the years: Clarke (1885), Durand (1888), Trimen (1895), Voss (1895), and Fyson (1915) all give "70" as their guess, Brown (1935) says "75", Lindley (1870) and Baker (1877) raised it to 80, Koorders \& Valeton (1900) and Briquet raised it to 90. Baker (1900), Pearson (1901), Cooke (1905), Brandis (1906), Parker (1924), Rehder (1927), Marloth (1932), and Wisler (1943) estimated that 100 would be the probable number, Corner (1952) raised it to 120 , P'ei (1932) to 160 , León \& Alain (1974) to "250--300", Chittenden \& Synge (1956) to 300, Moldenke (1940), Sastri (1950), and Troncoso (1974) to 350 , Hsiao (1975, 1978), Cronquist (1981), and the Corrells (1982) to 400, the Baileys (1976) to "over 450", and LopezPalacios (1977) to "ca. 500".

Westman (1744) placed Clerodendrum in his group called Plantae Baccatae and Volkameria in his Plantae Armatae, a purely pre-linnean artificial classification. Linneus (1743) placed Clerodendrum and Volkameria in his Didynamia Angiospermia and Siphonanthus in his Tetrandria Monogynia.

Patulix Raf. was proposed by Rafinesque as a new name for Torreya Spreng. (1821), a name antedated by Rafinesque's Torreya of 1818 and 1819. The type species of Egena Raf. is E. erminensis Raf., now known as Clerodendrum emirnense Bojer.

Numerous errors and inaccuracies occur in the bibliography of Clerodendrum. Among these may be mentioned for the record the following: Douglasia Lindl. (1827) is sometimes cited as first published in "1904" and Siphonanthus Schreb. (1858) as first published in "1874". Jackson (1893, 1895) misdates Egena Raf. (1837) and Rotheca Raf. (1838)
as "1836". The Hortus Cliffortianus of Linneus (1738) is often cited as "1737" and as pp. "180", "189", or "480" instead of p. 489. The Siphonantherum of Amman is usually erroneously credited to "Act. Akad. Petrop. 1736", but actually was not effectively published until 1741. The Kunze (1843) reference in the synonymy of Clerodendrum is mis-dated "1842" by Rehder. Soukup (1976) credits Connacchinia to "Savia" (rather than Savi) and Torreya to "Spreg." (instead of Sprengel). Tetrathyranthus A. Gray is cited, as a genus, by Jackson (1893), Dalla Torre \& Harms (1904), Bakhuizen (1921), and others to Proc. Amer. Acad. Sci. 6: 50 (1862), but the hame was nut proposed as a genus by Gray in that reference, but plainly as a subgeneric group. Dalla Torre \& Harms (1904) erroneously cite Tonreya Spreng. (1821) to page "221" instead of to pp. 121--122. Baillon's work (1891) bears the erroneous date "1892" on its titlepage. Clarke (1885) is of ten cited as page "580", but the genus is not mentioned on that page.

Maruang is cited by Adanson (1763) to Rumpf, Herb. Amboin. 4: pl. 49, but it is given there only as a vernacular name among others. Pinnakola Herm. (1763) is sometimes erroneously cited to page "200" of Adanson's work and "Clerodendron (Linn.) R. Br." to page "226" of Spach's work (1840). Clerodendron Adans. is cited by Airy Shaw (1966) to Adans., Fain. P1. 2: 199 \& 540 (1763), but the name is there plainly accredited by Adanson to "Burm." Burman (1737) on page [241] of his work, in the index, incorrectly gives the plate number illustrating this genus as "25" instead of 29. Palisot de Beauvois' (1806 \& 1810) references are sometimes cited as published in "1800" and "1806" respectively. The Tiwari \& Garg (1961) reference in the bibliography is sometimes mis-cited to page "177" instead of 77-78.

Ovieda L. is sometimes erroneously cited to L., Sp. Pl.., ed. 1, page "188" and Clerodendrum L. to page "109". In Chamisso's (1832) work page 105 is erroneously designated as "150" through a printing error. The 0liver (1887) plate is sometimes mis-cited as plate "1550" instead of 1559 . Post \& Kuntze (1903) cite the Linneus 1738 reference as "1737", the titlepage date, but the work was not effectively published until 1738; they also mis-cite the page reference ds "480" instead of 489. Sweet (1826) refers to Browne's (1756) plate as plate " 20 " instead of 30 . The titlepage of Engler's Bot. Jahrb., vol. 29, containing Diels' work, is dated "1901", but pages 321--576 were actually published on December 4, 1900. Siebold \& Zuccarini's 1846 work is sometimes mis-dated as "4 (3)" instead of 3 (4). The page reference in Walpers' Repert. Bot. Syst., volume 4, is sometimes mis-cited as "173" instead of 73 . The reference in Meisner's P1. Vasc. Gen., volume 1, is sometimes given as page "637" instead of 291 and the work is mis-dated as published in $1838 \ldots$ actually pages 257--312 were not effectively published until 1840. The Clerodendrum references in Loudon's Hort. Brit., ed. 3 (1839) are sometimes cited as "549--550" and "623" instead of $247,529, \&$ 622. Similarly, the page reference of Kafinesque's Journ. Phys. (1819) work is sometimes mis-cited as "79" or "97" instead of 105 , and the page in Lalnarck's Encycl. Bot. Meth., volume 8, is sometimes miscited as "69" instead of 691.

DeWildeman's 1913 work is dated "1912" on the title-page, but was
not actually issued until 1913; similarly, GUrke's 1893 work is of ten mis-dated by the volume date of "1894". Dalzell \& Galson (1861) and other authors mis-cite the Patrick Browne (1756) illustration as "t. 20" instead of 30. Rafinesque's genus Rotheca (1838) is mistakenly cited as published on page "65", instead of 69, by Rehder (1949).

It is worth noting here also that Edwards, Bot. Reg. p1. 1037 is sometimes cited as representing a Clerodendrum, but actually it depicts a species of Hellenia in the Zingiberaceae, while Curtis, Bot. Mag. pl. 4259, also sometimes cited as a clerodendrum is actually a picture of a Clematis species in the Ranunculaceae. The plant depicted in Ann. Rep. Smithson. Inst. 1896: pl. 18 (1898) is certainly not anything verbenaceous.

Pfeiffer (1874) refers to Burman's Flora Indica as though it were authored by the senior Burman (Johannes, 1707--1779), but is was actually written by the younger Nicolaas Laurens (1733--1793), usually referred to as "Burm. f."

The title-page date of Baillon's Hist. P1. is "1891", but the first 112 pages of volume 10 were actually issued and thus available for consultation in November or December of 1888; volume 11 is cited by L6pez-Palacios (1977) as "1892", but actually pages 1--304 were issued in 1891. Similarly, the Sprengel (1824) reference is often inaccurately cited as "1825", the title-page date, but the work actually appeared already late in 1824. The Nees (1825) reference is sometimes incorrectly accredited to Blume.

The Lam (1924) reference in the Clerodendrum bibliography is sometimes cited as "1925", but, again, this is merely the title-page date; the page that concerns us was issued in 1924. The Endlicher (1838) reference is often cited as "1836--1856" or as "1839", but the pages involved with clerodendrum actually appeared in 1838. Similarly, his 1858 reference is cited by Pfeiffer (1873) as published in "1857", but pages $705-960$ of volume 2, the volume that concerns us here, were not actually issued until 1858. The Angely (1971) reference is often cited as published in "1970", the title=page date, but was delayed in publication until 1971.

The genus Agricola Schrank is sometimes erroneously cited to "Meisı., Gen. Pl." instead of to Endl., Gen. Pl. (1838).

In Beckett's work (1976) the illustration of the "glory pea" is erroneously labeled as a clerodendrum through a reversal of the legends by the typesetter. Backer's (1917) work is sometime incorrectly cited as in volume "4 (8)" instead of 8 (4). Jacquin's (1798) work is sometines erroneously cited as published in "1789". Haines' (1922) contribution is often cited as "6: 720 (1924)", but pages 419--754, including the pages that refer to Clerodendrum, appear in volume 4 and this was published in 1922. In the Index Kewensis and elsewhere the Vatke (1882) reference is cited as "1880--1882", but pages 253 to the end of the volume definitely comprise the portion issued in 1882.

The Schnitzlein (1856) reference is also usually cited by the running title-page date of "1843--1870", but the page that concerns Clerodendrum was definitely issued in 1856. Pfeiffer (1874), for some reason as yet unknown to me, cites the Miquel 1858 work as "1857" and the Willdenow (1802) one as "1800".

The genus Cornacchinia Endl. is attributed by Taylor (1966) to
"Endl., Nov. Stirp. 18. 1839", but, actually, it was there published as "Cornachina" as Taylor himself admits. The two Walpers references $(1845,1847)$ are most often cited by the title-page date of "1842-$1848^{\prime \prime}$. The Wittstein work (1852) is often referred to as published in 1856 and the Boissier (1879) work as "1875" -- indeed, pages 1-280 were issued in 1875, but pages 281--1276, illcluding the pages that concern us, were not issued until 1879. The Itô (1928) contribution, for some reason not yet known to me, is sometimes cited as "1927". The Andersson 1859 work bears the date of "1857", but a paper published in 1859 is cited in it on page 80!

The index in Vinha \& al. (1983) indicates that Clerodendrum is listed on page "124"; actually it is on page 126. Bocquillon (1863) mis-cites the Robert Brown (1812) work as "ed. l", while it actually is the 2nd amplified edition; he also mis-cites the J. J. Reichard (1778) work as authored by "Rich." [L. C. Richard].

The fruits of Clerodendrum are very often described as being "berries" from Westman in 1744 to authors in the present day literature on the genus! They are always and quite obviously drupes.

Numerous authors have reported unidentified species of Clerodendrum on the basis of collections which they (or the botanists to whom they submitted them for identification) were not able to assign names. Some of these, arranged in more or less chronological fashion, are the following.

The "Clerodendron sp." cited by Hooker filius in Trans. Linn. Soc. tond. 20: 261 (1847), by Andersson in Vet. Akad. Handl. Stockh. 1853: 201 (1854) and Galap. Veg. 82 (1859), and by Robinson in Proc. Amer. Acad. Sci. 38: 195 (1902) is most probably Clenodendrum molle H.B.K.

Plates $445 \& 448$, fig. 4 , in Griffith's 1854 opus illustrate only the floral parts of two alleged species unidentified by him. Vidal y Soler (1885) lists Cuming 1423, 1475, 1573, 1644, 1688, \& 1900 as unidentified species of Clerodendrum from the Philippines. Koorders (1898) lists unidentified species of the genus in indonesia with the local vernacular nanes of "bale-tango", "bonoewan-toengow", "kembangboegang", "sesewanoewa". and "watana".

Pobéguin (1906) lists five alleged species, undetermined except to genus, from Guinea and represented by Kindia 1281, Kouroussa 428, Sankaran 834, Sineya 803, and Timbo 154. Pulle (1911) cites Branderhorst 74 as an unidentified species from New Guinea. Chevalier 14370 is listed as an unidentified Clenodendrum froll Saint Tomé by Chevalier (1914) and by Exell (1944). In his 1913 work Chevalier lists Chevalier 6521, unidentified, from the Central African Republic.

Hansford (1961) lists many unidentified Clerodendrum specimens serving as host for fungi studied by him: Schweinfurth 2753 from tropical Africa; Dummer 3014, Hansford 1757, 1792, 1844, 1920, 1959, 2005, 2015, 2016, 2130, 2255, 2354, 2525, 2596, 3034, 3314, \& 3335, Maitland 229 \& 271, and Small 461 from Uganda; Robinson 2466 from Celebes, Burkill 4142 from Penang, Hendrickx s.n. and Vanderyst 3188, 21809, 21813, 23723, \& 33170 from Zaire, and Philip. Bur. Sci. 36470 from the Philippines, all infested by Meliola clerodendricola P. Henn.

Cufodontis (1962) cites two unidentified collections froll Ethiopid: Glover \& Gilliland 8.n. and Hemming 1503, known locally, respectively , as "dumot" and "dumod" or "dumot". He notes that "Nominibus monen-
tibus ambo specimina cum C. microphyllo et C. Robecchii comparare proderit.".

Kerharo \& Bocquet (1950) cite Gagnoa 892 as an unidentified Clerodendrum from the Ivory Coast, called "dibi-titi" and "kpétiti" there; he notes that "Le produit obtenu en pilant des tiges feuillés et des graines de maniguette est utilisé, en frictions, pour soigner les dermatoses."

Van Royen (1960) cites, unidentified, his no. 5517 fronı New Guinea. Schnell \& Grout de Beaufort (1966) discuss the myrmecophily exhibited by Hedin 69, unidentified, from the Cameroons. Meyer (1966) describes the petaloidy exhibited by the stamens of an unidentified species -perhaps nothing more than the conmon Clerodendrum philippinum f. multiplex (Sweet) Mold. Hyland (1968) cites as an unidentified Clerodendrum a no. 1212, U. S. Dept. Agr. Pl. Inventory 285370 from Nepal. Vergiat (1970) reports two unidentified Clerodendrum species in tropical Africa locally called "furu", "inina gbandila", and "ungale".

Whitmore (1966) cites his nos. $1554 \& 3453$ from the Solomon Islands, representing an unidentified Clerodendrum which is a "common sinall bushy tree mainly in secondary lowland forests" and there known as "kakafai", "kakafaimeo", "kakfaikwau", "kinili'o", and "teterao". Razafind (1971) lists what he supposes to be two unidentified species of Clerodendrum from Madagascar, known there by the vernacular names of "aletry" and "varitikia", respectively, and used medicinally there as a blennorhagic in cases of back ailments.

Sometimes Asiatic members of the genus Clerodendrum are misidentified as species of Gmelina. On the other hand, some horticultural specimens, labeled as unidentified Clenodendrum species, actually are specimens of the composite genus Montanoa Cerv. Among the many other herbarium collections which I have examined over the past 50 years, labeled as unidentified Clerodendrum species, may be mentioned the following: Albens 59099 is a mint, Bayliss BS. 1365 \& 7469 are in the Acanthaceae, Bernardi 11731 is probably not verbenaceous, O. M. Clank 7100 is not verbenaceous, Comanor 722 is Premna tomentosa Willd., Demaree 28323 is a mint, Dewol \& Talib SAN. 80371 is Premna foetida Reinw., Frizzi s.n. is not verbenaceous, Geesink \& Phengkhlai 6179 is not verbenaceous, A. Gentry 9395 is Aegiphila elata Sw., Hosseus 5 is Glossocarya mollis Wall., Hugh 105 is not verbenaceous, Kassas s.n. [10.1.1956] is Premna resinosa f. grossedentata Mold. (type), Kassim s.n. [29/8/64] is Premna odorata Blume, R. M. King 2183 is Trichostema sp., Kinted SAN. 19065 is Premna foetida Reinw., Koelz 18915 is not verbenaceous Kostermans 24327 \& 28141 are Glossocarya scandens (L. f.) Trimen, Kundu \& Balakrishnan 187 is Glossocarya scandens (L. t.) Trimen, Leach \& Cawnell 13854 is not verbenaceous, Leopold SAN. 82440 is Premna odorata f. crenulata Koord. \& Val., Leopold \& Kodoh SAN. 81399 is not verbenaceous, Maxwell, Hopper, \& Fernand. 979 is something in either the Dleaceae or Apocynaceae, Meijer SAN. 23423 is not verbenaceous, Native collector 2055 is Dichroa febrifuga Lour., Oldham 679 is Premna microphylla Turcz., Oncutt 3057 is Aegiphila deppeana Steud., Peter 50665 [S.12] is not verbenaceous, Reekmans 2109 is not verbenaceous, Rusby 18 is not verbenaceous, Sadau SAN. 53858 is Jasminum sp., Schlieben 5730 is Premna velutina Gurke, Sinaanggol SAN. 57292 is Premna oblongifolia var. angustata Mold. (type), J. D.

Smith 2554 is Hiraea kunthiana A. L. Juss., Streimann \& Kaino LAE. 1567 is Glossocarya hemiderma (F. Muell.) Benth., Tanodop SAN. 83610 is Sphenodesme triflora Wight, Vaupel 363 is Faradaya amicorum (Seem.)
Seem., O. E. White 2368 is in the Rubiaceae, E. H. Wilson 2424 is
Caryopteris chosenensis Mold., Worthington 5297 is Glossocarya scan-
dens (L. f.) Trimen, and Zenker 1465 is not verbenaceous.
A list of excluded taxa, including some from homonymous genera:
Bellevalia Delile ex Endl., Gen. P1. 231. $1837=$ Althenia Petit, zanichelliaceae
Bellevalia Lepyr., Journ. Phys. Chim. Hist. Nat. 67: 425. $1808=$ Hyacinthus L., Liliaceae
Bellevalia Montrouz. ex Beauvis., Gen. Montrouz. 80. 1901 = Agatea A. Gray, Violaceae

Bellevalia "Montrouz. apud Beauvis." ex Airy Shaw in J. C. Willis, Dict. Flow. Pl., ed. 8, 130 in syn. $1973=$ Agatea A. Gray, Violaceae
Bellevalia Roem. \& Schult in L., Syst. Veg., ed. 16, 5: xxii. $1819=$ Richeria Vahl, Euphorbiaceae
Clerodendron "Hort. ex DC." apud Pfeiffer, Nom. Bot. 1 (1): 785 in syn. $1873=$ Verbesina L., Carduaceae
Clerodendron Hort. ex A. P. DC., Prodr. 5: 613 in syn. $1836=$ Verbesina atriplicifolia A. L. Juss., Carduaceae
Clerodendron abbreviata Miq. ex H. J. Lani, Verbenac. MaLAY. Arch. 364 sphaln. 1919 = Premna obtusifolia R. Br.
Clerodendron amicorum Seenı., Bonplandia 10: [249]--250. $1862=$ Faradaya amicorum (Seen.) Seem.
Clerodendron (Tetrathyranthus) amicorum A. Gray, Proc. Aner. Acad. Sci. 6: 50. $1862=$ Fanadaya amiconum (Seen.) Seen.
Clerodendron arthurgordoni Horne, Year Fiji 259 noin. nud. $1881=$ Faradaya ovalifolia (A. Gray) Seem.
Clerodendron arthur-gordoni Horne ex Mold., Fifth Sumu. 1: 439 in syn. = Faradaya ovalifolia (A. Gray) Seem.
Clerodendron bolivianum Britton ex Rusby, Bull. Torrey Bot. Club 27 : 82. $1900=$ Aegiphila multiflora Ruiz \& Pav.

Clerodendron bolivianum Rusby ex Mold., Prelim. Alph. List Inv. Names 18 in syn. $1940=$ Aegiphila multiflona Ruiz \& Pav.
Clerodendron canum D. Don ex Walp., Repert. Bot. Syst. 4: 115 in syn. $1845=$ Leucosceptrum canum J. E. Sin., Lamiaceae
Clerodendron capitatum Klotzsch ex Mold., Prelim. Alph. List Inv. Nanes 10 in syn. 1940 = Aegiphila macrantha Ducke
Clerodendron demeusei DeWild. ex Mold., Résumé 262 in syn. $1959=$ Buddleia L., Buddleiaceae
Clerodendron divaricatum Sieb. \& Zucc., Abhandl. Akad. Wiss. Muench. Math.-Phys. 4 (3) [F1. Jap. Fam. Nat. 2]: 154. $1846=$ Caryopteris chosenensis Mold.
Clerodendron epiphyticum Standl., Field Mus. Publ. Bot. 22: 168--169. $1940=$ Gibsoniothamnus epiphyticum (Standl.) L. 0. Wills., Scrophuearuaceae
Clerodendron esquirolii Levl. [no. 943], Feddes Repert. Spec. Nov. 11: 298. 1912 - Tacca chantrieri André, Taccaceae

Clerodendron foetidum D. Don, Prodr. Fl. Nepal. 103. $1825=$ Caryopteris foetida (D . Don) Thellung

Clerodendron formosum Beckett, Illust. Encycl. Indoor PI. 187 sphalm. $1976=$ Clianthus formosus (G. Don) Ford \& Vickery, Fabaceae
Clerodendron gordoni J. G. Baker, Journ. Linn. Soc. Lond. Bot. 20: 370. 1883 = Faradaya ovalifolia (A. Gray) Seem.
Clerodendron granum Jameson ex Mold., Alph. List Inv. Names Suppl. 1: 6 in syn. $1947=$ Caryopteris fsetida (D. Don) Thellung
Clerodendron ghata Kurz ex Collett \& Hemsl., Journ. Liın. Soc. Lond. Bot. 28: 111 in syn. 1890 = Caryopteris paniculata C. B. Clarke
Clerodendron gratum Benth. ex Mold., Alph. List Inv. Names Suppl. 1: 6 in syn. 1947 - Caryopteris foetida (D. Don) Thellung
Clerodendron gratum Kurz ex C. B. Clarke ill Hook. f., Fl. Brit. India 4: 597 in syn. $1885=$ Caryopteris paniculata C. B. Clarke
Clerodendron graturn Wall., Numer. List 50 ["49"], no. 1811 hyponyin. 1829 = Caryopteris foetida (D. Don) Thellung
Clerodendron gulmasta Hamilt. ex Mold., Phytol. Mem. 2: 386 in syn. $1980=$ Caryopteris odorata (Hamilt.) B. L. Robinson
Clerodendron helianthemifolium Wall. ex Steud., Nom. Bot. Phan., ed. 2, 1: 383. $1840=$ Caryopteris odorata (Hamilt.) B. L. Robinson
Clenodendron hemiderma F. Muell. in Benth. \& F. Muell., Fl. Austral. 5: 61. 1870 = Glossocarya hemiderma (F. Muell.) Benth.
Clerodendron leucosceptrum D. Don, Prod. F1. Nepal. 103. $1825=$ Leucosceptrum canum J. E. Sm., Lamiaceae
Clerodendron (Hemiderma) linnaei F. Muell. ex Benth. \& F. Muell., FI. Austral. 5: 61 in syn. $1870=$ Glossocarya hemiderma (F. Muell.) Benth.
Clerodendron linnaei F. Muell. ex Mold., Résumé 266 in syn. $1959=$ Glossocarya hemiderma (F. Muell.) Benth.
Clerodendron linnaei Thwaites in Thwaites \& Hook. f., Enum. PI. Ceyl. 243. 1861 = Glossocarya scandens (L. f.) Trimen

Clerodendron lobbiana Clarke apud Ridl., Journ. Straits Br. Roy. Asiat. Soc. 50: 125 in syn. $1908=$ Hoseanthus lobbii (C. B. Clarke) Merr.
Clerodendron lobbianum C. B. Clarke ex Mold., Alph. List Inv. Names 18 in syn. $1942=$ Hoseanthus lobbii (C. B. Clarke) Merr.
Clerodendron lobbianum [C. B. Clarke] ex Prain, Ind. Kew. Suppl. 4, imp. 1, 125 in syn. $1911=$ Hoseanthus labbii (C. B. Clarke) Merr.
Clerodendron lobbianum Ridl. ex H. J. Lam in Lam \& Bakh., Bull. Jard. Bot. Buitenz., ser. 3, 3: 95 in syn. 1921 = Hoseanthus lobbii (C. B. Clarke) Merr.

Clerodendron lobbii C. B. Clarke in Hook. f., Fl. Brit. India 4: 590. $1885=$ Hoseanthus Lobbii (C. B. Clarke) Merr.

Clerodendron malmesianum Mold., Suppl. List Inv. Names 2 in syn. 1941 = Tetraclea coulteri f. angustifolia (Woot. \& Standl.) Mold.
Clerodendron matudae Standl., Field Mus. Publ. Bot. 17: 206--207. 1937 - Aegiphila costaricensis Mold.
Clerodendron matudai Standl. apud Matuda, Amer. Midl. Nat. 44: 575. $1950=$ Aegiphila costaricensis Mold.
Clerodendron mimicum Standl. \& Steyerm., Field Mus. Publ. Bot. 23: 227. 1947 = Gibsoniothamnus mimicum (Standl. \& Steyerin.) L. 0. Wins., Scrophulariaceae
Clerodendron moldenkeanum Standl., Field Mus. Publ. Bot. 22: 99. 1940 = Gibsoniothamnus moldenkeanus (Standl.) L. 0. Wins., Scrophular-

iaceae

Clerodendron moupinense Franch., Nouv. Arch. Mus. Paris, ser. 2, 10: 68. 1888 = Microtoena moupinensis (Franch.) Franch., Lamiaceae

Clerodendron odoratum Buch. ex Voigt, Hort. Suburb. Calc. 466. 1845 = Caryopteris odorata (Hamilt.) B. L. Robinson
Clerodendron odoratum Buch.-llam. ex D. Don, Prodr. F1. Nepal. 102. $1825=$ Caryopteris odorata (Hamilt.) B. L. Robinson
Clerodendron odoratum D. Don ex Schau. in A. DC., Prodr. 11: 625 in syn. 1847 = Caryopteris odorata (Hamilt.) B. L. Robinson
Clerodendron odoratum Ham. ex Mold., Phytologia 54: 242 in syn. 1983 = Caryopteris odorata (Hamilt.) B. L. Robinson
Clerodendron odoratum (Hamilton) D. Don ex B. L. Robinson, Proc. Amer. Acad. Sci. $51: 531$ in syn. 1916 = Caryopteris odorata (Hamilt.) B. L. Robinson
Clerodendron odoratum "[Hamilton] D. Don" ex Fedde \& Schust., Justs Bot. Jahresber. 60 (2): 571 in syn. 1941 = Caryopteris odorata (Hamilt.) B. L. Robinson
Clerodendron ovalifolia A. Gray apud Parham, Fiji Nat. P1. 124. 1943 = Faradaya ovalifolia (A. Gray) Seem.
Clerodendron ovalifolium A. Gray apud Drake del Castillo, lllust. Fl. Ins. Mar. Pacif. 261. 1892 = Faradaya ovalifolia (A. Gray) Seem.
Clerodendron (Tetrathyranthus) ovalifolium A. Gray, Proc. Amer. Acad. Sci. 6: 50. 1862 = Faradaya ovalifolia (A. Gray) Seem.
Clerodendron peekelii Markgraf, Notizbl. Bot. Gart. Berl. 10: 121. 1927 = Faradaya peekelii (Markgraf) Mold.
Clerodendron pentandrum (Vent.) Bueck ex Mold., Prelim. Alph. List Inv. Names 21 in syn. $1940=$ Citharexylum pentandrum Vent.
Clerodendron pheomoides Hort. Ital. ex Walp., Repert. Bot. Syst. 4: 115 in syn. $1845=$ Montanoa arborescens C. Koch, Carduaceae
Clerodendron pithecobium Standl. \& Steyerm., Field Mus. Publ. Bot. 22: 373--374. 1940 = Gibsoniothamnus cornutus (Donn. Sin.) A. Gentry,
1 Scrophulariaceae
Clerodendron powellii Benth. \& Hook. f. ex Drake del Castillo, Illust. F1. Ins. Mar. Pacif. 261. 1892 = Faradaya powellii Seen.
Clerodendron powellii (Seem.) Benth. \& Hook. ex Mold., Alph. List Inv. Names 19 in syn. 1942 = Faradaya powellii Seem.
Clerodendron scandens (L. f.) Druce ex Mold., Alph. List Inv. Names 20 in syn. $1942=$ Glossocarya scandens (L. f.) Trimen
Clenodendron sericeum Wall., Numer. List "49" [=50], no. 1814, nom. nud. $1829=$ Hiptage sericea (Wall.) Hook. f., Malpighiaceae
Clerodendron sieboldii Kuntze, Rev. Gen. P1. 2: b05. 1891 = Caryopteris chosenensis Mold.
Clerodendron spicatum Thunb., F1. Jav. 22. 1825 = Orthosiphon spiralis Lour., Lamiaceae
Cxerodendron spinescens Gurke in Engl., Ptlanzenw. Ost-Afr. C: 340 in syn. 1895 = Kalaharia uncinata (Schinz) Mold.
Clerodendron spinescens (01iv.) Gurke, Engl. Bot. Jalirb. 18: 180--181. 1893 = Kalahania uncinata(Schinz) Mold.
Clerodendron uncinatum Schinz, Verhandi. Bot. Ver. Brand. 31: 206-207. 1890 = Kalaharia uncinata (Schinz) Mold.

Clerodendron uncinatum var. parviflora (Schinz) GUrke, Engl. But. Jahrb. 18: 181. 1893 = Kalaharia uncinata var. parviflora (Schinz)

Mold.
Clerodendron urcinatum Schinz ex Mold., Fifth Summ. 1: 459 in syn. 1971 = Kalaharia uncinata (Schinz) Mold.
Clerodendron verrucosum Splitgb. ex Mold., Prelim. Alph. List Inv. Names 22 in syn. $1940=$ Trichanthera gigantea (Humb. \& Bonpl.) Nees, Acanthaceae
Clerodendron no. 33 Hook. f. \& Thoms. ex C. 8. Clarke in Hook. f., F1. Brit. India 4: 580 in syn. 1885 = Premna amplectens Wall.
Clerodendrum bolivianum Britton apud J. F. Macbr., Field Mus. Publ. Bot. 13 (5): 714 in syn. $1960=$ Aegiphila multiflora Ruiz \& Pav.
Clerodendrum brasiliense Spreng. ex Mold., Prelim. Alph. List Inv. Names 22 in syn. 1940 -- not verbenaceous
Clerodendrum capitatum Klotzsch ex Mold., Phytologia 1: 234 in syn. 1937 = Aegiphila macrantha Ducke
Clerodendrum commune Edgeworth, Pollen, ed. 1. 26. nl. 1, 12, \& 15, nom. nud. 1977 = identity undetermined
Clerodendrum discolor Turcz. ex Mold., Fifth Summ. 1: 461 in syn. 1971 = Citharexylum discolor Turcz.
Clerodendrum epiphyticum Standl. ex Mold., Known Geogr. Distrib. Verbenac., ed. 1, 22, 23, \& 89. 1942 = Gibsoniothamnus epiphyticus (Standl.) L. 0. Wms., Scrophulariaceae
Clerodendrum foetidum D. Don ex Mold., Prelim. Alph. List Inv. Names 23 in syn. $1940=$ Caryopteris foetida (D. Don) Thellung
Clerodendrum gordoni J. G. Baker ex Mold., Known Geogr. Distrib. Verbenac., ed. $1,68 \& 90.1942=$ Faradaya ovalifolia (A. Gray) Seem.
Clerodendrum granum Jameson, Rep. Bot. Gov. Northw. Prov. 164. 1855; J. F. Wats., Ind. Nat. Scient. Names 523. 1868 = Caryopteris foetida (D. Don) Thellurg
Clerodendrum gratum Kurz ex Mold., Suppl. List Inv. Names 2 in syn. 1941 = Caryopteris paniculata C. B. Clarke
Clerodendrum gulmasta Hanilt. ex Wall., Nunier. List B7, no. 1812G. 1831 = Caryopteris odorata (Hamilt.) B. L. Robinson
Clerodendnum linnaei Thwaites ex Mold., Alph. List Inv. Names Suppl. 1: 7 in syn. 1947 = Glossocarya scandens (L. f.) Trimen
Clerodendrum loniceroides Mold., Lloydia 13: 208. $1950=$ Buddleia lonicenvides (Mold.) Mold., 8uddleiaceae
Clerodendrum mimicum Standl. \& Steyerin. apud E. J. Salisb., Ind. Kew. Suppl. 11: 56. 1953 = Gibsoniothamnus mimicus iStandl. \& Steyerm.) L. 0. Wms., Scrophulariaceae
Clerodendrum moldenkeanum Standl. ex Mold., Suppl. List Inv. Names 2. 1941 = Gibsoniothamnus moldenkeanus (Standl.) L. 0. Wms., Scrophulariaceae
Clerodendrum moupinense Franch. ex Mold., Alph. List Inv. Names 21 in syn. 1942 = Microtoena moupinensis (Franch.) Franch., Lamiaceae
Clerodendrum nelmesianum Mold., Geogr. Distrib. Avicenn. 14 nom. nud. $1939=$ Tetraclea coulteri f. angustifolia (Woot. \& Standl.) Mold.
Clerodendrum odoratum Hamilt. ex Wall., Numer. List 87, no. 1812F. 1831 = Caryopteris odorata (Hamilt.) 8. L. Robinson
Clerodendrum ovalifolium (A. Juss.) Bakh. ex Beard, Descrip. Cat. W. Austral. PI., ed. 1, 91. $1965=$ Faradaya ovalifolia (A. Gray) Seem.

Clerodendrum pithecobium Standl. \& Steyerm. apud Mold., Suppl. List Inv. Names 2. 1941 = Gibsoniothamnus cornutus (Donn. Sm.) A. Gentry, Scrophulariaceae
Clerodendrum spicatum Edgeworth, Pollen, ed. 1, 26 \& 76, pl. 1, 12. $1877=$ Orthosiphon spiralis Lour., Lamiaceae
Clerodendrum spinescens (Oliv.) Gurke apud B. Thomas, Engl. Bot. Jahrb. 18: 89. $1936=$ Kalaharia uncinata (Schinz) Mold.
Clenodendrum standleyi Mold., Known Geogr. Distrib. Verbenac., ed. I, 76. $1942=$ Tryblicalyx pyramidatus Lindau, Acanthaceae

Clenodendrum ternatum Hoffmgg. ex Mold., Prelim. Alph. List Inv. Names 23 in syn. $1940=$ Vitex triflora Vahl
Clerodendrum uncinatum Schinz apud G. Taylor, Ind. Kew. Suppl. 12: 76. 1959 = Kalaharia uncinata (Schinz) Mold.

Clerodendrum uncinatum Schinz \& Mold. ex Mold., Fifth Summ. 1: 466 in syn. 1971 = Kalaharia uncinata (Schinz) Mold.
Clerodendrum verrucosum Splitgb. ex Pulle, Enum. Pl. Surin. 404. $1906=$ Trichanthera gigantea (Humb. \& Bonpl.) Nees, Acanthaceae
Cornacchinia Endl. ex G. Taylor, Ind. Kew. Suppl. 13: 35 in syn. 1966 = Baeolepis Decne., Periplocaceal
Cryptanthus Nutt. ex Moq. in A. DC., Prodr. 13 (2): 54. $1849=$ Aphanisma Nutt., Chenopodiaceae
Cryptanthus 0tto \& Dietr., Allg. Gartenzeit. 4: 298. 1836 -- in the Bromeliaceae
Cryptanthus acaulis (Lindl.) Beer, Bromel. 75. 1857 .- in the Bromeliaceae
Cryptanthus andicola Moritz ex Baker, Handb. Bromel. 4 in syn. $1889=$ -- in the Bromeliaceae
Cryptanthus bahiensis L. B. Sm., Arquiv. Bot. Est. S. Paulo, ser. 2 f. maj., 1: 106, p1. 104. 1943-- in the Bromeliaceae

Cryptanthus beuckeri E. Murr., Belg. Hortic. 30: 241. 1880 -- in the Bromeliaceae
Cryptanthus bivittatus (Hook.) Regel, Ind. Seln. Hort. Petrop. 1864: 15. 1864 -- in the Bromeliaceae

Cryptanthus bromelioides Otto \& Dietr., Allg. Gartenzeit. 4: 298. 1836 -- in the Bromeliaceae
Cryptanthus clavatus Hort. ex Baker, Handb. Bromel. 68 in syn. $1889=$ Canistrum aurantiacum E. Morr., Bromeliaceae
Cryptanthus discolor Otto \& Dietr., Allg. Gartenzeit. 4: 299. 1836 -in the Bromeliaceae
Cryptanthus diversifolius Beer, Bromel. 76. 1857-- in the Bromeliaceae
Cryptanthus duartei L. B. Sm., Smithson. Misc. Coll. 126: 23, fig. 67. 1955 -- in the Bromeliaceae
Cryptanthus fosterianus L. B. Sm., Bromel. Soc. Bull. 2: 63. 1952.in the Bromeliaceae
Cryptanthus glaziovii Mez in Mart., Fl. Bras. 3 (3): 202. 1891-- in the Bromeliaceae
Cryptanthus glaziovii sensu L. B. Sim. ex L. B. Sin., Arquiv. Bot. Est. S. Paulo, ser. 2 f. maj., 1: 106 in syn. 1943

Cryptanthus incrassatus L. B. Sm., Arquiv. But. Est. S. Paulo, ser. 2 f. maj., 2: 119, p1. 49. 1950 -. in the Bromeliaceae

Cryptanthus \&acerdae Antoine, Hort. Gentil. Pl. Cult. Serr. Jard. Bot. Brux. 66. 1907 -- in the Bromeliareae
Cryptanthus marginatus L. B. Sm., Smithson. Misc. Coll. 126: 24, fig. 70. 1955-- in the Bromeliaceae

Cryptanthus maritimus L. B. Sm., Arquiv. Bot. Est. S. Paulo, ser. 2 f. maj., l: 106, pl. 105. 1943-- in the Bromeliaceae

Cnyptanthus minanum L. B. Sm., Smithson. Misc. Cull. 126: 24, fig.69. 1955 -- in the Bromeliaceae
Cryptanthus morrenianus Regel, Gartenf1. 37: 157. $1888=$ Bramelia morreniana (Regel) Mez, Bromeliaceae
Cryptanthus osiris Weber, Feddes Repert. 93: 337--339. 1982-- in the Bromeliaceae
Cryptanthus pickelii L. B. Sm., Smithson. Misc. Coll. 126: 25, fig. 72. 1955 -- in the Bromeliaceae

Cryptanthus praetextus E. Morr. ex Baker, Handb. Bromel. 16. 1889 -ill the Bromeliaceae
Cryptanthus pseudoscaposus L. B. Sm., Smithson. Misc. Coll. 126: 25, fig. 68. 1955 -- in the Bromeliaceae
Cryptanthus schwackeanus Mez in Mart., Fl. Bras. 3 (3): 203. 1891 .in the Bromeliaceae
Cryptanthus sinuosus L. B. Sm., Smithson. Misc. Coll. 126: 26. 1955 -in the Bromeliaceae
Cryptanthus undulatus 0tto \& Dietr., Allg. Gartenzeit. 4: 299. 1836 -- in the Bromeliaceae
Cryptanthus zonatus (Visianı) Beer, Bromel. 76. 1857 -- in the Bromeliaceae
Cyclonema tettensis Klotzsch in Peters, Naturwiss. Reise Mossamb. 6 [Bot.] 1: 261. 1861 = Holmskioldia tettensis (Klotzsch) Vatke
Cyrtostemma Mert. \& Koch ex Spach, Hist. Vég. Phan. 10: 321. 1841 = Scabiosa L., Dipsacaceae
Cyrtostemma (Mert. \& Koch) Spach apud Airy Shaw in J. C. Willis, Dict. Flow. Pl., ed. 8, 333 in syn. $1973=$ Scabiosa L., Dipsacaceae
Cyrtostemma Spach, Hist. Vég. Phan. 10: 321. 1841 = Scabiosa L., Dipsacaceae
Cyrtostemma atropurpurea Mert. \& Koch ex Spach, Hist. Vég. Phan. $10:$ 321--323. 1841 = Scabiosa atropurpurea L., Dipsacaceae
Cyrtostemma atropurpureum Spach ex Jacks. in Hook. f. \& Jacks., Ind. Kew., imp. 1, 1: 705 in syn. 1893 = Scabiosa atropurpurea L., Dipsacaceae
Cyntostemma maritimum Fourr., Ann. Soc. Linn. Lyon, ser. 2, 16: 401. 1808 = Scabiosa maritima L., Dipsacaceae
Douglasia Heist. ex Pust \& Kuntze, Lex. 185 in syn. $1904=$ Nerine Herb., Amaryllidaceae
Douglasia Lindl. in Brande, Journ. Sci. 1827: 385. 1827 -- in the Primulaceae
Douglasia Schreb. ex Mold., Phytol. Mem. 2: 397 in syn. $1980=$ Aiouea Aubl., Lauraceae
Douglasia arctica Hook., F1. Bor.-Amer. 2: 120. 1838 -- in the Primulaceae
Douglasia dentata S. Wats., Proc. Amer. Acad. Sci. 17: 375. $1882=$ D. nivalis Lindl., Primulaceae

Douglasia laevigata A. Gray, Proc. Amer. Acad. Sci. 16: 105. 1881 .in the Primulaceae
Douglasia montana A. Gray, Proc. Amer. Acad. Sci. 7: 371. 1868 -- in the Primulaceae
Douglasia nivalis Lindl. in Brande, Journ. Sci. 1827: 383. 1827-in the Primulaceae
Douglasia vitaliana Benth. \& Hook. f., Gen. P1. 2 (1): 632. 1876 -in the Primulaceae
Douglassia Auct. ex Mold., Phytol. Menr. 2: 397 in syn. $1980=$ Aiouea Aubl., Lauraceae
Douglassia "Auct. corr. Durand" ex Post \& Kuntze, Lex. 185 in syn. 1904 = Aiouea Aubl., Lauraceae
Douglassia Durand ex Mold., Phytol. Mem. 2: 397 in syn. $1980=$ Aiouea Aubl., Lauraceae
Douglassia Heist. ex Airy Shaw in J. C. Willis, Dict. Flow. Pl., ed. 8, 387 in syn. $1973=$ Nerine Herb., Amaryllidaceae
Douglassia Reichenb., Conspect. Reg. Veg. 1: 128. $1828=$ Douglasia Lindl., Primulaceae
Douglassia Schreb. in L., Gen. P1., ed. 8[9], 2: 809. 1791 = Aiouea Aubl., Lauraceae
Douglassia laurina J. E. Sm. in Rees, Cyclop., imp. I [London], 12: Douglassia. $1809=$ Aiouea guianensis Aubl., Lauraceae
Duglassia Lindl. ex Schau. in A. DC., Prodr. 11: 656 in syn. $1847=$ Douglasia Lindl., Primulaceae
Jasminum L. apud Prain, Ind. Kew. Suppl. 4, imp. 1, 132. 1913 = Jasminum Tourn., Oleaceae
Jasminum Tourn. ex L., Syst. Nat., ed. 1, imp. 1, 1735; Jacks. in Hook. f. \& Jacks., Ind. Kew., imp. 1, 1: 1249. 1893 -- in the vleaceae
Jasminum [Tourn.] L. ex Jacks. in Hook. f. \& Jacks., Ind. Kew., imp. 1, 1: 1249. 1893 = Jasminum Tourn., Oleaceae
Ovieda Spreng., Anleit. 2 (1): $258.1817=$ Lapeirousia Pourr., Iridacear
Ovieda aculeata Klatt, Linnaed 32: 777. 1863 = Lapeirousia compressa Pourr., Iridaceae
Ovieda anceps Spreng. in L., Syst. Veg., ed. 16 [=17], 1: 147. 1824 Lapeirousia compressa Pourr., Iridaceae
Ovieda bracteata (Ker-Gawl) Spreng. in L., Syst. Vey., ed. 16 [$=17$], 1: 147. 1824 = Lapeirousia fissifolia Ker-Gdwl, Iridaceae
Ovieda corymbosa (Ker-Gawl) Spreng. in L., Syst. Veg., ed. $16[=11$], 1: 147. $1824=$ Lapeirousia corymbosa Ker-Gawl, Iridaceae
Ovieda erythrantha Klotzsch in Peters. Naturwiss. Reise Mossamb. 6 [Bot.] 2: 516. $1864=$ Lapeirousia enythrantha (Klotzsch) J. G. Baker, Iridaceae
Ovieda fabricii (Ker-Gawl) Spreng. in L., Syst. Veg., ed. 16 [=17], 1: 147. 1824 = Lapeirousia fabricii Ker-Gawl, 1ridaceae
Ovieda falcata (Ker-Gawl) Spreng. in L., Syst. Veg., ed. 16 [=17], 1: 147. 1824 - Lapeirousia falcata Ker-Gawl, Iridaceae

Ovieda fasciculata Spreng. in L., Syst. Veg., ed. 16 [=17], $1: 147$. 1824 - Lapeirousia fissifolia Ker-Cawl, Iridaceae
Ovieda fistulosa Spreng. ex Klatt, Linnaea 32: 781. $1863=$ Lapeirousia fistulusa (Spreng.) J. G. Baker, Inidaceae

Ovieda micrantha E. Mey. ex Klatt, Linnaed 32: 781. $1863=$ Lapeirousia micrantha (E. Mey.) J. G. Baker, Iridaceae
Ovieda purpureo-lutea Klatt, Linnaea 32: 780. 1863 = Lapeirousia purpureo-lutea (Klatt) J. G. Baker, Inidaceae
Ovieda silenoides (Ker-Gawl) Spreng. in L., Syst. Veg., ed. 16 [=17], 1: 147. 1824 = Lapeirousia silenoides Ker-Gawl, Iridaceae
Petasites Gaertn. apud Prain, Ind. Kew. Suppl. 4, imp. 1, 177. 1913 = Petasites Tourn., Carduaceae
Petasites L. apud Prain, Ind. Kew. Suppl. 3: 133. $1908=$ Petasites Tourn., Carduaceae
Petasites Mill. apud A. W. Hill, Ind. Kew. Suppl. 6: 191. $1926=$ Petasites Tourn., Carduaceae
Petasites (Tourn.) L. apud Durand \& Jacks., Ind. Kew. Suppl. I, imp. 1, 2: 477. 1906 = Petasites Tourn., Carduaceae
Petasites [Tourn.] L. apud Jacks. in Hook. f. \& Jacks., Ind. Kew., imp. 1, 2: 477. $1895=$ Petasites Tourn., Carduaceae
Siphonanthus Schreb. ex Baill., Etud. Gén. Euph. 324. $1858=$ Hevea Aubl., Euphorbiaceae
Siphonanthus "Schreb. ex Baill." apud Airy Shaw in J. C. Willis, Dict. Flow. Pl., ed. 8, 1070 in syn. 1973 = Hevea Aubl., Euphorbiaceae
Siphonanthus elasticus Schreb. ex Biill., Etud. Gén. Euph. 325. 18ヶ8 = Hevea elastica (Schreb.) Karst., Euphorbiaceae
Spironema Lindl. in Eúwards, Bot. Reg. 26: pl. 47. $1840=$ Rectanthera Degener, Commelinaceae
Spinonema Raf., F1. Tellur., imp. 1, 4: 92. 1838 = Cassytha L., Cassythaceae
Spinonema aphylla Raf., F1. Tellur., imp. 1, 4: 92. $1838=$ Cassytha filiformis L., Cassythaceae
Spirunema fragrans Lindl. in Edwards, Bot. Reg. 26: pl. 47. $1840=$ Rectanthera fragrans (Lindl.) Degener, Commelinaceae
Spironema orthandrum Lindb., Act. Soc. Sci. Fenn. 10: 127, pl. 4. 1871 - Rectanthera orthandrum (Lindb.) Degener, Commelinaceae
Spironema robbinsii C. Wright in Sauv., FI. Cub. 158. 1873 = Callisia repens L., Commelinaceae
Spironema warszewiczianum Hassk. ex C. B. Clarke in A. P. \& A. C. DC., Monog. Phan. 3: 302. 1881 = Tradescantia warszewicziana Kunth \& Bouché, Commelinaceae
Tetrathyranthus A. Gray apud Durand, Ind. Gen. Phan. 322. 1888; Dalla Torre \& Harms, Gen Siphonog., imp. 1, 433 in syn. $1904=$ Faradaya F. Muell.

Torreya Arn., Ain. Nat. Hist., ser. 1, 1: 130. 1838 -- in the Taxaceae
Torreya Croullt ex Meisn., P1. Vasc. Gen. 2 [Comm.]: 340. 1843 - Croomia Torr., Croomiaceal
Torreya "Croom ex Meisn." apud Airy Shaw in J. C. Willis, Dict. Flow. Pl., ed. 8. 1160 in syn. 1973 = Croomia Torr., Croomiaceae
Tonneya "Croom. ex Mesin." apud Soukup, Biota 11: 10 in syn. $1976=$ Croomia Torr., Croomiaceae
Torreya Eatun, Man. Bot. N. Amer., ed. 5, 400. $1829=$ Nuttallia Raf., Loasaceal
Torreya Raf., Amer. Monthly Mag. 3: 356. 1818 = Synandra Nutt., Lamiaceae

Torreya Raf., Journ. Phys. Chim. Hist. Nat. 89: 105. $1819=$ Cyperus L., Cyperaceae

Torreys bogotensis Linden, Cat. 12. 1870 -- in the Taxaceae
Torreya caespitosa Raf., Journ. Phys. Chim. Hist. Nat. 89: 105. 1819 $=$ Cyperus filicinus Vahl, Cyperaceae
Torreya californica Torr., N. Y. Journ. Pharm. 3: 49. 1852 -- in the Taxaceae
Torneya grandiflora Raf., Amer. Monthly Mag. 3: 356. $1818=$ Synandra hispidula (Michx.) Britton, Lamiaceae
Torneya grandis Fortune ex Gord., Pinet., ed. 1, 326. 1858 -- in the Taxaceae
Tonneya humboldtii Hort. ex Lindl. \& Gord., Journ. Roy. Hort. Soc. 5: 226. $1850=$ Podocarpus taxifolia H.B.K., Podocarpaceae

Tonreya maritima Raf., Journ. Phys. Chim. Hist. Nat. 89: 105. 1819 = Cyperus filicinus Vahl, Cyperaceae
Tonreya montana Hort. ex Lindl. \& Gord., Journ. Roy. Hort. Soc. 5: 229. 1850 = Podocarpus taxifolia H.B.K., Podocarpaceae

Torreya myristica Hook., Curtis Bot. May. 80 [ser. 3, 10]: pl. 4780 $=$ T. californica Torr., Taxaceae
Torreya nucifera Sieb. \& Zucc., Abhandl. Akad. Wiss. Muench. Math.Phys. 3 (4): $234.1846-$ in the Taxaceae
Torrcya taxifolia Arn., Ann. Nat. Hist., ser. 1, 1: 130. 1838 -- in the Taxaceae
Volcameria Heist. ex Fabr., Enum. Meth. Pl., ed. 1, 55. 1759 = Cedronella Muench, Lamiaceae
Volckameria Fabr. apud Airy Shaw in J. C. Willis, Dict. Fluw. PI., ed. 8, 1216 in syn. 1973 = Cedronella Moench, Lamiaceae
Volckameria Heist. ex Fabr., Enum. Meth. P1. ed. 2, 102. $1763=$ Cedronella Moench, Lamiaceae
volkamera P. Br. ex Post \& Kuntze, Lex. 589 in syn. $1904=$ Clethra Gron., Clethraceae
Volkamera Burm. ex Post \& Kuntze, Lex. 589 in syn. $1904=$ Capparis Tourn., Capparidaceae
Volkamera "Heist.-Fabr." ex Post \& Kuntze, Lex. 589. $1904=$ Cedronella Moench, Lamiaceae
Volkamera "L. (1735)" ex Post \& Kuntze, Lex. 589 in syn. $1904=$ Sesamum L., Pedaliaceae
Volkamera P. \& K. apud Airy Shaw in J. C. Willis, Dict. Flow. PI., ed. 7,1186 in syn. $1966=$ Capparis Tourn., Capparidaceae
Volkameria P. Browne, Civil Nat. Hist. Jallaic., ed. 1, 214, pl. 21, fig. 1. $1756=$ Clethra Gron., Clethraceae
Volkameria Burm. ex Pfeiffer, Nom. Bot. 2 (2): 1598 in syn. $1874=$ Capparis Tourn., Capparidaceae
Volhameria Burm. f. ex Mold., Résumé Suppl. 16: 30 in syn. 1968; Airy Shaw in J. C. Willis, Dict. Hlow. Pl., ed. 8, 1216 in syn. 1973 = Capparis Tourn., Capparidaceae
Volkameria alata (Schumach.) Kuntze, Rev. Gen. P1. 1 (2): 482. 1891 = Sesamum alatum Thonn., Pedaliaceae
Volkameria angolensis (01iv.) Kuntze, Rev. Gen. P1. 1 (2): 482. 1891 = Sesamum angolense 01iv., Pedaliaceae
Vokkameria antirrhinoides (Asch.) Kuntze, Rev. Gen. 11. 1 (2): 482. 1891 = Sesamum antirnhinoides Asch., Pedaliaceae

Volkamenia calycina (0liv.) Kuntze, Rev. Gen. P1. 1 (2): 482. $1891=$ Sesamum calycinum 01 iv., Pedaliaceae
Volkameria capensis Burin. ex Walp., Repert. Bot. Syst. 4: 101. $1845=$ Capparis volkameria P. DC., Capparidaceae
Volkameria capensis Burm. f., Prod. Fl. Cap. $17.1768=$ Capparis volkameria P. DC., Capparidaceae
Volkameria foliis petiolatis, cordatis, ovatis, inteqerrimis, panicula corymbosa, terminali, ramulis dichotomis L. f. ex Lain., Encycl. Méth. But. 8: 69 in syn. 1808 = Glossucarya scandens (L. f.) Trimen

Volkameria inermis Reinw. ex Blume, Mus. Bot. Lugd.-Bat. 1: 239. 1850 = Geniostoma rupestre Forst., Loganiaceae
Volkameria laciniata (Willd.) Kuntze, Rev. Gen. P1. 1 (2): 482. 1891 = Sesamum laciniatum Willd., Pedaliaceae
Volkameria lamiifolia (Engl.) Kuntze, Rev. Gen. P1. 1 (2): 482. 1891 = Sesamum lamiifolium Engl.,
Volkameria macrantha (01iv.) Kuntze, Rev. Gen. P1. 1 (2): 482. $1891=$ Sesamum macranthum 01iv., Pedaliaceae
Volkameria marlothii (Eng1.) Kuntze, Rev. Gen. P1. 1 (2): 482. $1891=$ Sesamum marlothii Engl., Pedaliaceae
Volkameria odorata Buch.-Ham. ex Mold., Prelim. Alph. List Inv. Names 53 in syn. $1940=$ Caryopteris odorata (Hamilt.) B. L. Robinson
Volkameria odorata (Buch.-HaII.) Roxb. apud Jacks. in Hook. f. \& Jacks., Ind. Kew., imp. 1, 2: 1219. 1895 = Caryopteris odorata (Hamilt.) B. L. Robinson
Volkameria odorata Hamilt. ex Roxb., Hort. Beng., imp. 1, 46. $1814=$ Caryopteris odorata (Hamilt.) B. L. Robinson
Volkameria odonata Roxb. ex Voigt, Hort. Suburb. Calc. $466.1845=$ Caryopteris odorata (Hamilt.) B. L. Robinson
Volkameria odoratissima Fisch. ex Steud., Nom. Bot., ed. 1, 890. 1821 -- identity unknown
Volkameria odoratissima Wall., Numer. List 87, no. 1812 E hyponyin. 1831 = Caryopteris odorata (Hamilt.) B. L. Robinson
Volkameria orientalis (L.) Kuntze, Rev. Gen. P1. 1 (2): 481. $1891=$ Sesamum indicun L., Pedaliaceae
Volkameria orientalis var. indica (L.) Kuntze ex Muld., Résumé 392 in syn. $1959=$ Sesamum indicum L., Pedaliaceae
Volkameria orientalis y indica (L.) Kuntze, Rev. Gen. Pl. 1 (2): 481. 1891 = Sesamum indicum L., Pedaliacear
Volhameria orientalis var. indivisa (DC.) Kuntze ex Mold., Résumé 392 in syn. 1959 = Sesamum indicum a subindivisum P. DC., Pedaliaceare
Volkameria orientalis a indivisa (DC.) Kuntze, Rev. Gen. P1. 1 (2): 481. 1891 = Sesamum indicum a subindivisum P. DC., Pedaliaceae

Volkameria orientalis f. plurivalvis Kuntze, Rec. Gen. P1. 1 (2): 48; : 1891 =Sesamum indicum f. plurivalve (Kuntze) Mold.
Volkameria orientalis β subdentata (DC.) Kuntze, Rev. Gen. P1. 1 (2): 481. $1891=$ Sesamum indicum β subdentatum P. DC., Pedaliaceae

Volkameria pentaphylla (E. Mey.) Kuntze, Rev. Gen. P1. 1 (2): 482. 1891 = Sesamum capense Burm. f., Pedaliaceae
Volkameria prostrata (Retz.) Kuntze, Rev. Gen. P1. 1 (2): 482. 1891= Sesamum prostratum Retz., Pedaliaceae

Volkameria ramis inferioribus ternis, superionibus oppositis; foliis acuminatis, glabris; flonibus solitariis, subsessilibus Lan., Encycl. Meth. Bot. 8: 691 in syn. $1808=$ Rhaphithamnus spinosus (A. L. Juss.) Mold.

Volkameria scandens L. f., Suppl. PI., imp. 1, 292. $1781=$ Glossocarya scandens (L. f.) Trimen
Volkameria schenkii (Asch.) Kuntze, Rev. Gen. P1. I (2): 482. 1891 Sesamum schenkii Asch., Pedaliaceae
Volkameria schinziana (Asch.) Kuntze, Rev. Gen. P1. 1 (2): 482. 1891 = Sesamum schinzianum Asch., Pedaliaceae
Volkameria sesamodes (Van Houtte) Kuntze, Rev. Gen. P1. 1 (2): 482. 1891 = Sesamum sesamoides Van Houtte, Pedaliaceae
Volkameria spinosa A. L. Juss., Ann. Mus. Hist. Nat. Paris 7: 76. $1806=$ Rhaphithamnus spinosus (A. L. Juss.) Mold.
Volkameria triphylla (Asch.) Kuntze, Rev. Gen. PI. 1 (2): 482. $1891=$ Sesamum triphyllum Asch., Pedaliaceae
Volkameria uniflora Dombey ex Mold., Feddes Repert. Spec. Nov. 42: 70. $1937=$ Rhaphithamnus spinosus (A. L. Juss.) Mold.

Volkameria uniflora Richard ex Mold., Phytologia 43: 312. 1979 Rhaphithamnus spinosus (A. L. Juss.) Mold.
Volkameria verticillata Ruiz \& Pav. ex Walp., Repert. Bot. Syst. 4: 73. $1845=$ Rhaphithamnus spinosus (A. L. Juss.) Mold.

Volkameria sp. W. Griff., Itin. Notes [Posthum. Pap. 2:] 128. $1898=$ Rhaphithamnus spinosus (A. L. Juss.) Mold.
Volkmannia Sternb., Vers. Geog. Darst. l (4): xxix. 1825 -- in the Naiadaceae
In regard to the Volkameria odoratissima Fisch., listed above: it is listed in both the 1821 edition of Steudel's work and in ed. 2, 780 (1840) as of doubtful identity. In the former work Steudel merely states that it is a perennial; in his 1840 work he says only "Hort. Gur. -- t" -- the abbreviation "Gor." is not listed among his explained abbreviations; the dagger indicates "planta dubia, nec rite cognia".

CLERODENDRUM ACERBIANUM (Visiani) Benth. in Benth. \& Hook. f., Gen. P1. 2 (2): 1156 [as "Clerodendron acerbiana"]. 1876; B. Thomas, Engl. Bot. Jahrb. 68: 89 \& 92. 1936.
Synonymy: Volkumeria acerbiana Visiani, Icon. Pl. Aegypt. Nub. 23, pl. 4, fig. 1. 1836. Cornacchinia fragiformis Savi, Merl. Mat. Fis. Soc. Ital. Sci. Modena 21: 184--185, pl.7. 1837. Clerodendron acerbianu (Visiani) Berith. in Benth. \& Hook. f., Gen. P1. 2 (2): 1156. 1876. Clerodendron acerbiana (Visiani) Boiss., Fl. Orient., imp. 1, 4: 536. 1879. Clerodendron acerbiana Benth. \& Houk. f. apud Jacks. in Hook. f. \& Jacks., Ind. Kew., imp. 1, 1: 560. 1893. Clerodendron holstii Gllrke, Abhandl. Preuss. Akad. Wiss. 122: 27. 1894. Clerodendron acerbianum (Vis.) Benth. ex Briq. in Engl. \& Prantl, Nat. Pflanzerlfall., ed. 1, 4 (3a): 176. 1895. Clerodendrum acerbianum (Vis.) Benth. \& Hook apud B. Thomas, Engl. Bot. Jahrb. 68: 89 \& 92. 1936. Clerodendron acerbianum Boiss. ex Mold., Suppl. List Inv. Names 2 in syn. 1941. Clerodendron acerbianum (Visiani) Benth. \& Hook. ex Mold., Alph. List Inv. Names 16 in syn. 1942; Glover, Prov. Check List Brit. Ital. Somal. 266. 1947. Clerodendron acerbiana Benth.
\& Hook. f. ex Mold., Alph. List Inv. Names Suppl. 1: 5 in syn. 1947. Clerodendron acerbianum (Visian) Boiss. apud Parsa, Fl. Iran 4 (1): 543. 1949. Volkameria acerb. Visian ex Parsa, Fl. Iran 4 (1): 542 in syn. 1949. Clerodendron acerbianum Benth. \& Hook. f. ex Montasir \& Hassib, lllust. Fl. Egypt 1: 388--389. 1956. Clerodendrum acerbianum (Vis.) Benth. \& Hook. f. ex Mold., Fifth Summ. l: 390 in syn. 1971.

Bibliography: Visiani, Icon. Pl. Aegypt. Nub. 23, pl. 4, fig. 1. 1836; Savi, Mem. Mat. Fis. Soc. Ital. Sci. Modena 21: 184--185, pl. 7. 1837; Schlecht., Linnaea 14: Anh. 85. 1840; Walp., Repert. Bot. Syst. 4: 100. 1845; Schau. in A. DC., Prodr. 11: 656. 1847; Buek, Gen. Spec. Syn. Candoll. 3: 502. 1858; Aschers. in G. Schweinf., Beitr. F1. Aethiop. 278. 1867; Benth. in Benth. \& Hook. f., Gen. Pl. 2 (2): 1156. 1876; Boiss., F1. Orient., imp. 1, 4: 536. 1879; Jacks. in Hook. f. \& Jacks., Ind. Kew., imp. 1, 1: 560 \& 618. 1893; GUrke, Abhandl. Preuss. Akad. Wiss. 122: 27. 1894; Briq. in Engl. \& Prantl, Nat. Pflanzenfam., ed. 1, 4 (3a): 176. 1895; GÜrke in Engl., Pflanzenw. Ost-Afr. C: 341. 1895; Jacks. in Hook. f. \& Jacks., Ind. Kew., imp. 1, 2: 1219. 1895; J. G. Baker in Thiselt.-Dyer. FI. Trop. Afr. 5: 293 \& 295. 1900; K. Schum., Justs Bot. Jahresber. 28 (1): 495. 1902; Chiov., Result. Scient. Miss. Stef. 1: 143 \& 218. 1916; Chiov., F1. Somala 60. 1929; Hutchins. \& Dalz., Fl. W. Trop. Afr., ed. 1, $2:$ 268 \& 273. 1931; Junell, Symb. Bot. Upsal. 1 (4): 101 \& 106. 1934; B. Thomas, Engl. Bot. Jahrb. 68: [Gatt. Clerod.] 3, 8, 9, 18, 19, 21, 23, 32, 89, \& 92. 1936; Mold., Prelim. Alph. List Inv. Names 18, 23, \& 53. 1940; Mold., Suppl. List Inv. Names 2. 1941; Mold., Alph. List Inv. Names 16, 18, 22, \& 56. 1942; Mold., Known Geogr. Distrib. Verbenac., ed. $1,45,46,49,50, \& 89.1942$; Jacks. in Hook. f. \& Jacks., Ind. Kew., imp. 2, 1: $560 \& 618$ (1946) and imp. 2, 2: 1219; Mold., Alph. List Cit. 1: 115 \& 183. 1946; Glover, Prov. Check List Brit. Ital. Somal. 266 \& 342. 1947; Mold., Alph. List Inv. Names Suppl. 1: 5. 1947; Mold., Alph. List Cit. 2: 407, 619, \& 620. 1948; H. N. \& A. L. Mold., Pl. Life 2: 48 \& 54. 1948; Mold., Alph. List Cit. 3: 657, 904, \& 916 (1949) and 4: 1235. 1949; Mold., Known Geogr. Distrib. Verbenac., ed. 2, 109--111, 116, 117, \& 180. 1949; Parsa, Fl. Iran 4 (1): 542, fig. 255. 1949; Montasir \& Hassib, lllust. Fl. Egypt 1: 388--389. 1956; Tackholm, Stud. F1. Egypt, ed. 1, 155. 1956; Mold., Résumé 132, 133, 135, 136, 143, 145, 259, 264, 275, 391, 392, \& 447. 1959; Jacks. in Hook. f. \& Jacks., Ind. Kew., imp. 3, 1: 560 \& 618 (1960) and imp. 3, 2: 1219. 1960; Dale \& Greenway, Kenya Trees 582 \& 583. 1961; Cuf., Bull. Jard. Bot. Brux. 32: Suppl. 798. 1962; Huher, Hepper, \& Meikle in Hutchins. \& Dalz., F1. W. Trop. Afr., ed. 2, 2: 440 \& 442. 1963; Boiss., F1. Orient., imp. 2, 4: 536. 1964; Berhaut, Fl. Sénégal, ed. 2, 109,112 , 130.1967 ; Mold., Résumé Suppl. 15: 6 (1967), 16: 7 (1968), and 17: 8. 1968; Gillett, Numb. Checklist Trees Kenya 46. 1970; Mold., Fifth Summ. 1: 209, 210, 213--215, $235,240,439,446$, \& 469 (1971) and 2: 732 \& 861. 1971; Tackholm, Stud. Fl. Egypt, ed. 2, 454. 1974; Thckholm \& Boulos, Suppl. Stud. Fl. Egypt 104.-106. 1974; Mold., Phytol. Mem. 2: 199, 201, 204, 206, 224, 230, 390, \& 513. 1980; Mold., Phytologia 57: 34. 1985.

Illustrations: Visiani, Icon. Pl. Aegypt. Nub. pl. 4, fig. 1. 1836; Parsa, fl. Iran 4 (1): 542, fig. 255. 1949.

